Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,192 @@
|
|
1 |
import gradio as gr
|
2 |
from pathlib import Path
|
3 |
import os
|
4 |
-
|
5 |
-
os.system('pip install tensorflow')
|
6 |
-
os.system('pip install nltk')
|
7 |
-
|
8 |
-
from transformers import pipeline
|
9 |
from transformers import MarianMTModel, MarianTokenizer
|
10 |
from nltk.tokenize import sent_tokenize
|
11 |
from nltk.tokenize import LineTokenizer
|
12 |
import math
|
13 |
import torch
|
14 |
import nltk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
nltk.download('punkt')
|
16 |
|
17 |
docs = None
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Definimos los modelos:
|
26 |
-
mname = "Helsinki-NLP/opus-mt-es-en"
|
27 |
-
tokenizer_es_en = MarianTokenizer.from_pretrained(mname)
|
28 |
-
model_es_en = MarianMTModel.from_pretrained(mname)
|
29 |
-
model_es_en.to(device)
|
30 |
-
|
31 |
-
mname = "Helsinki-NLP/opus-mt-en-es"
|
32 |
-
tokenizer_en_es = MarianTokenizer.from_pretrained(mname)
|
33 |
-
model_en_es = MarianMTModel.from_pretrained(mname)
|
34 |
-
model_en_es.to(device)
|
35 |
-
|
36 |
-
lt = LineTokenizer()
|
37 |
-
|
38 |
-
question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
|
39 |
-
|
40 |
-
def request_pathname(files):
|
41 |
-
if files is None:
|
42 |
-
return [[]]
|
43 |
-
return [[file.name, file.name.split('/')[-1]] for file in files]
|
44 |
-
|
45 |
-
def traducir_parrafos(parrafos, tokenizer, model, tam_bloque=8, ):
|
46 |
-
parrafos_traducidos = []
|
47 |
-
for parrafo in parrafos:
|
48 |
-
frases = sent_tokenize(parrafo)
|
49 |
-
batches = math.ceil(len(frases) / tam_bloque)
|
50 |
-
traducido = []
|
51 |
-
for i in range(batches):
|
52 |
-
|
53 |
-
bloque_enviado = frases[i*tam_bloque:(i+1)*tam_bloque]
|
54 |
-
model_inputs = tokenizer(bloque_enviado, return_tensors="pt",
|
55 |
-
padding=True, truncation=True,
|
56 |
-
max_length=500).to(device)
|
57 |
-
with torch.no_grad():
|
58 |
-
bloque_traducido = model.generate(**model_inputs)
|
59 |
-
traducido += bloque_traducido
|
60 |
-
traducido = [tokenizer.decode(t, skip_special_tokens=True) for t in traducido]
|
61 |
-
parrafos_traducidos += [" ".join(traducido)]
|
62 |
-
return parrafos_traducidos
|
63 |
-
|
64 |
-
def traducir_es_en(texto):
|
65 |
-
parrafos = lt.tokenize(texto)
|
66 |
-
par_tra = traducir_parrafos(parrafos, tokenizer_es_en, model_es_en)
|
67 |
-
return "\n".join(par_tra)
|
68 |
-
|
69 |
-
def traducir_en_es(texto):
|
70 |
-
parrafos = lt.tokenize(texto)
|
71 |
-
par_tra = traducir_parrafos(parrafos, tokenizer_en_es, model_en_es)
|
72 |
-
return "\n".join(par_tra)
|
73 |
-
|
74 |
-
def validate_dataset(dataset):
|
75 |
-
global docs
|
76 |
-
docs = None # clear it out if dataset is modified
|
77 |
-
docs_ready = dataset.iloc[-1, 0] != ""
|
78 |
-
if docs_ready:
|
79 |
-
return "✨Listo✨"
|
80 |
else:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
with gr.Blocks() as demo:
|
123 |
gr.Markdown("""
|
@@ -160,8 +229,168 @@ with gr.Blocks() as demo:
|
|
160 |
context = gr.Markdown(label="Contexto")
|
161 |
# ask.click(fn=do_ask, inputs=[query, buildb,
|
162 |
# dataset], outputs=[answer, context])
|
163 |
-
ask.click(fn=
|
164 |
-
|
165 |
|
166 |
demo.queue(concurrency_count=20)
|
167 |
-
demo.launch(show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from pathlib import Path
|
3 |
import os
|
4 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
|
|
|
|
|
|
|
|
|
5 |
from transformers import MarianMTModel, MarianTokenizer
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from nltk.tokenize import LineTokenizer
|
8 |
import math
|
9 |
import torch
|
10 |
import nltk
|
11 |
+
import numpy as np
|
12 |
+
import time
|
13 |
+
import hashlib
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
+
import textract
|
18 |
+
from scipy.special import softmax
|
19 |
+
import pandas as pd
|
20 |
+
from datetime import datetime
|
21 |
nltk.download('punkt')
|
22 |
|
23 |
docs = None
|
24 |
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
26 |
+
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
|
27 |
+
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
|
28 |
+
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()
|
29 |
+
|
30 |
+
if device == 'cuda:0':
|
31 |
+
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
|
32 |
+
else:
|
33 |
+
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)
|
34 |
+
|
35 |
+
def cls_pooling(model_output):
|
36 |
+
return model_output.last_hidden_state[:,0]
|
37 |
+
|
38 |
+
def encode_query(query):
|
39 |
+
encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)
|
40 |
+
|
41 |
+
with torch.no_grad():
|
42 |
+
model_output = model(**encoded_input, return_dict=True)
|
43 |
+
|
44 |
+
embeddings = cls_pooling(model_output)
|
45 |
+
|
46 |
+
return embeddings.cpu()
|
47 |
+
|
48 |
+
|
49 |
+
def encode_docs(docs,maxlen = 64, stride = 32):
|
50 |
+
encoded_input = []
|
51 |
+
embeddings = []
|
52 |
+
spans = []
|
53 |
+
file_names = []
|
54 |
+
name, text = docs
|
55 |
+
|
56 |
+
text = text.split(" ")
|
57 |
+
if len(text) < maxlen:
|
58 |
+
text = " ".join(text)
|
59 |
+
|
60 |
+
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
|
61 |
+
spans.append(temp_text)
|
62 |
+
file_names.append(name)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
else:
|
65 |
+
num_iters = int(len(text)/maxlen)+1
|
66 |
+
for i in range(num_iters):
|
67 |
+
if i == 0:
|
68 |
+
temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
|
69 |
+
else:
|
70 |
+
temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])
|
71 |
+
|
72 |
+
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
|
73 |
+
spans.append(temp_text)
|
74 |
+
file_names.append(name)
|
75 |
+
|
76 |
+
with torch.no_grad():
|
77 |
+
for encoded in tqdm(encoded_input):
|
78 |
+
model_output = model(**encoded, return_dict=True)
|
79 |
+
embeddings.append(cls_pooling(model_output))
|
80 |
+
|
81 |
+
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
|
82 |
+
|
83 |
+
np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings)))
|
84 |
+
np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
|
85 |
+
np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
|
86 |
+
|
87 |
+
return embeddings, spans, file_names
|
88 |
+
|
89 |
+
def predict(query,data):
|
90 |
+
name_to_save = data.name.split("/")[-1].split(".")[0][:-8]
|
91 |
+
k=20
|
92 |
+
st = str([query,name_to_save])
|
93 |
+
st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load
|
94 |
+
hist = st + " " + st_hashed
|
95 |
+
now = datetime.now()
|
96 |
+
current_time = now.strftime("%H:%M:%S")
|
97 |
+
|
98 |
+
try: #if the same question was already asked for this document, upload question and answer
|
99 |
+
df = pd.read_csv("{}.csv".format(hash(st)))
|
100 |
+
list_outputs = []
|
101 |
+
for i in range(k):
|
102 |
+
temp = [df.iloc[n] for n in range(k)][i]
|
103 |
+
text = ''
|
104 |
+
text += 'Probabilidades: '+ temp.Probabilities + '\n\n'
|
105 |
+
text += 'Respuesta: ' +temp.Answer + '\n\n'
|
106 |
+
text += 'Contexto: '+temp.Passage + '\n\n'
|
107 |
+
list_outputs.append(text)
|
108 |
+
return list_outputs
|
109 |
+
except Exception as e:
|
110 |
+
print(e)
|
111 |
+
print(st)
|
112 |
|
113 |
+
if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings
|
114 |
+
doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
115 |
+
doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
116 |
+
file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
|
117 |
+
|
118 |
+
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
|
119 |
+
doc_text = list(doc_text.values())
|
120 |
+
file_names = list(file_names_dicto.values())
|
121 |
+
|
122 |
+
else:
|
123 |
+
text = textract.process("{}".format(data.name)).decode('utf8')
|
124 |
+
text = text.replace("\r", " ")
|
125 |
+
text = text.replace("\n", " ")
|
126 |
+
text = text.replace(" . "," ")
|
127 |
+
|
128 |
+
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
|
129 |
+
|
130 |
+
doc_emb = doc_emb.reshape(-1, 768)
|
131 |
+
with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
|
132 |
+
f.write(text)
|
133 |
+
|
134 |
+
#once embeddings are calculated, run MIPS
|
135 |
+
start = time.time()
|
136 |
+
query_emb = encode_query(query)
|
137 |
+
|
138 |
+
scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
|
139 |
+
doc_score_pairs = list(zip(doc_text, scores, file_names))
|
140 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
141 |
+
|
142 |
+
probs_sum = 0
|
143 |
+
probs = softmax(sorted(scores,reverse = True)[:k])
|
144 |
+
table = {"Contexto":[],"Respuesta":[],"Probabilidades":[]}
|
145 |
+
|
146 |
+
|
147 |
+
#get answers for each pair of question (from user) and top best passages
|
148 |
+
for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
|
149 |
+
passage = passage.replace("\n","")
|
150 |
+
#passage = passage.replace(" . "," ")
|
151 |
+
|
152 |
+
if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
|
153 |
+
QA = {'question':query,'context':passage}
|
154 |
+
ans = pipe(QA)
|
155 |
+
probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5),
|
156 |
+
round(ans["score"]*probs[i],5),
|
157 |
+
round(probs[i],5))
|
158 |
+
table["Contexto"].append(passage)
|
159 |
+
table["Respuesta"].append(str(ans["answer"]).upper())
|
160 |
+
table["Probabilidades"].append(probabilities)
|
161 |
+
else:
|
162 |
+
table["Contexto"].append(passage)
|
163 |
+
table["Respuesta"].append("no_answer_calculated")
|
164 |
+
table["Probabilidades"].append("P(p|q): {}".format(round(probs[i],5)))
|
165 |
+
|
166 |
+
|
167 |
+
#format answers for ~nice output and save it for future (if the same question is asked again using same pdf)
|
168 |
+
df = pd.DataFrame(table)
|
169 |
+
print(df)
|
170 |
+
print("time: "+ str(time.time()-start))
|
171 |
+
|
172 |
+
with open("HISTORY.txt","a", encoding = "utf-8") as f:
|
173 |
+
f.write(hist)
|
174 |
+
f.write(" " + str(current_time))
|
175 |
+
f.write("\n")
|
176 |
+
f.close()
|
177 |
+
df.to_csv("{}.csv".format(hash(st)), index=False)
|
178 |
+
|
179 |
+
list_outputs = []
|
180 |
+
for i in range(k):
|
181 |
+
text = ''
|
182 |
+
temp = [df.iloc[n] for n in range(k)][i]
|
183 |
+
text += 'Probabilidades: '+ temp.Probabilities + '\n\n'
|
184 |
+
text += 'Respuesta: ' +temp.Answer + '\n\n'
|
185 |
+
text += 'Contexto: '+temp.Passage + '\n\n'
|
186 |
+
|
187 |
+
list_outputs.append(text)
|
188 |
+
|
189 |
+
return list_outputs
|
190 |
|
191 |
with gr.Blocks() as demo:
|
192 |
gr.Markdown("""
|
|
|
229 |
context = gr.Markdown(label="Contexto")
|
230 |
# ask.click(fn=do_ask, inputs=[query, buildb,
|
231 |
# dataset], outputs=[answer, context])
|
232 |
+
ask.click(fn=predict, inputs=[query,
|
233 |
+
gr.inputs.File()], outputs=[answer])
|
234 |
|
235 |
demo.queue(concurrency_count=20)
|
236 |
+
demo.launch(show_error=True)
|
237 |
+
|
238 |
+
# iface = gr.Interface(fn =predict,
|
239 |
+
# inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
|
240 |
+
# gr.inputs.File(),
|
241 |
+
# ],
|
242 |
+
# outputs = [
|
243 |
+
# gr.outputs.Carousel(['text']),
|
244 |
+
# ],
|
245 |
+
# description=description,
|
246 |
+
# title = title,
|
247 |
+
# allow_flagging ="manual",flagging_options = ["correct","wrong"],
|
248 |
+
# allow_screenshot=False)
|
249 |
+
|
250 |
+
# iface.launch(enable_queue=True, show_error =True)
|
251 |
+
|
252 |
+
# Definimos los modelos:
|
253 |
+
# Traducción
|
254 |
+
# mname = "Helsinki-NLP/opus-mt-es-en"
|
255 |
+
# tokenizer_es_en = MarianTokenizer.from_pretrained(mname)
|
256 |
+
# model_es_en = MarianMTModel.from_pretrained(mname)
|
257 |
+
# model_es_en.to(device)
|
258 |
+
|
259 |
+
# mname = "Helsinki-NLP/opus-mt-en-es"
|
260 |
+
# tokenizer_en_es = MarianTokenizer.from_pretrained(mname)
|
261 |
+
# model_en_es = MarianMTModel.from_pretrained(mname)
|
262 |
+
# model_en_es.to(device)
|
263 |
+
|
264 |
+
# lt = LineTokenizer()
|
265 |
+
|
266 |
+
# Responder preguntas
|
267 |
+
# question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
|
268 |
+
|
269 |
+
# def request_pathname(files):
|
270 |
+
# if files is None:
|
271 |
+
# return [[]]
|
272 |
+
# return [[file.name, file.name.split('/')[-1]] for file in files]
|
273 |
+
|
274 |
+
# def traducir_parrafos(parrafos, tokenizer, model, tam_bloque=8, ):
|
275 |
+
# parrafos_traducidos = []
|
276 |
+
# for parrafo in parrafos:
|
277 |
+
# frases = sent_tokenize(parrafo)
|
278 |
+
# batches = math.ceil(len(frases) / tam_bloque)
|
279 |
+
# traducido = []
|
280 |
+
# for i in range(batches):
|
281 |
+
|
282 |
+
# bloque_enviado = frases[i*tam_bloque:(i+1)*tam_bloque]
|
283 |
+
# model_inputs = tokenizer(bloque_enviado, return_tensors="pt",
|
284 |
+
# padding=True, truncation=True,
|
285 |
+
# max_length=500).to(device)
|
286 |
+
# with torch.no_grad():
|
287 |
+
# bloque_traducido = model.generate(**model_inputs)
|
288 |
+
# traducido += bloque_traducido
|
289 |
+
# traducido = [tokenizer.decode(t, skip_special_tokens=True) for t in traducido]
|
290 |
+
# parrafos_traducidos += [" ".join(traducido)]
|
291 |
+
# return parrafos_traducidos
|
292 |
+
|
293 |
+
# def traducir_es_en(texto):
|
294 |
+
# parrafos = lt.tokenize(texto)
|
295 |
+
# par_tra = traducir_parrafos(parrafos, tokenizer_es_en, model_es_en)
|
296 |
+
# return "\n".join(par_tra)
|
297 |
+
|
298 |
+
# def traducir_en_es(texto):
|
299 |
+
# parrafos = lt.tokenize(texto)
|
300 |
+
# par_tra = traducir_parrafos(parrafos, tokenizer_en_es, model_en_es)
|
301 |
+
# return "\n".join(par_tra)
|
302 |
+
|
303 |
+
# def validate_dataset(dataset):
|
304 |
+
# global docs
|
305 |
+
# docs = None # clear it out if dataset is modified
|
306 |
+
# docs_ready = dataset.iloc[-1, 0] != ""
|
307 |
+
# if docs_ready:
|
308 |
+
# return "✨Listo✨"
|
309 |
+
# else:
|
310 |
+
# return "⚠️Esperando documentos..."
|
311 |
+
|
312 |
+
# def do_ask(question, button, dataset):
|
313 |
+
# global docs
|
314 |
+
# docs_ready = dataset.iloc[-1, 0] != ""
|
315 |
+
# if button == "✨Listo✨" and docs_ready:
|
316 |
+
# for _, row in dataset.iterrows():
|
317 |
+
# path = row['filepath']
|
318 |
+
# text = Path(f'{path}').read_text()
|
319 |
+
# text_en = traducir_es_en(text)
|
320 |
+
# QA_input = {
|
321 |
+
# 'question': traducir_es_en(question),
|
322 |
+
# 'context': text_en
|
323 |
+
# }
|
324 |
+
# return traducir_en_es(question_answerer(QA_input)['answer'])
|
325 |
+
# else:
|
326 |
+
# return ""
|
327 |
+
|
328 |
+
# # def do_ask(question, button, dataset, progress=gr.Progress()):
|
329 |
+
# # global docs
|
330 |
+
# # docs_ready = dataset.iloc[-1, 0] != ""
|
331 |
+
# # if button == "✨Listo✨" and docs_ready:
|
332 |
+
# # if docs is None: # don't want to rebuild index if it's already built
|
333 |
+
# # import paperqa
|
334 |
+
# # docs = paperqa.Docs()
|
335 |
+
# # # dataset is pandas dataframe
|
336 |
+
# # for _, row in dataset.iterrows():
|
337 |
+
# # key = None
|
338 |
+
# # if ',' not in row['citation string']:
|
339 |
+
# # key = row['citation string']
|
340 |
+
# # docs.add(row['filepath'], row['citation string'], key=key)
|
341 |
+
# # else:
|
342 |
+
# # return ""
|
343 |
+
# # progress(0, "Construyendo índices...")
|
344 |
+
# # docs._build_faiss_index()
|
345 |
+
# # progress(0.25, "Encolando...")
|
346 |
+
# # result = docs.query(question)
|
347 |
+
# # progress(1.0, "¡Hecho!")
|
348 |
+
# # return result.formatted_answer, result.context
|
349 |
+
|
350 |
+
|
351 |
+
# with gr.Blocks() as demo:
|
352 |
+
# gr.Markdown("""
|
353 |
+
# # Document Question and Answer adaptado al castellano por Pablo Ascorbe.
|
354 |
+
|
355 |
+
# Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa
|
356 |
+
|
357 |
+
# La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
|
358 |
+
# y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
|
359 |
+
# a inglés y luego volver a traducir en sentido contrario.
|
360 |
+
|
361 |
+
# ## Instrucciones:
|
362 |
+
|
363 |
+
# Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
|
364 |
+
|
365 |
+
# """)
|
366 |
+
# uploaded_files = gr.File(
|
367 |
+
# label="Sus documentos subidos (PDF o txt)", file_count="multiple", )
|
368 |
+
# dataset = gr.Dataframe(
|
369 |
+
# headers=["filepath", "citation string"],
|
370 |
+
# datatype=["str", "str"],
|
371 |
+
# col_count=(2, "fixed"),
|
372 |
+
# interactive=True,
|
373 |
+
# label="Documentos y citas"
|
374 |
+
# )
|
375 |
+
# buildb = gr.Textbox("⚠️Esperando documentos...",
|
376 |
+
# label="Estado", interactive=False, show_label=True)
|
377 |
+
# dataset.change(validate_dataset, inputs=[
|
378 |
+
# dataset], outputs=[buildb])
|
379 |
+
# uploaded_files.change(request_pathname, inputs=[
|
380 |
+
# uploaded_files], outputs=[dataset])
|
381 |
+
# query = gr.Textbox(
|
382 |
+
# placeholder="Introduzca su pregunta aquí...", label="Pregunta")
|
383 |
+
# ask = gr.Button("Preguntar")
|
384 |
+
# gr.Markdown("## Respuesta")
|
385 |
+
# answer = gr.Markdown(label="Respuesta")
|
386 |
+
# with gr.Accordion("Contexto", open=False):
|
387 |
+
# gr.Markdown(
|
388 |
+
# "### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
|
389 |
+
# context = gr.Markdown(label="Contexto")
|
390 |
+
# # ask.click(fn=do_ask, inputs=[query, buildb,
|
391 |
+
# # dataset], outputs=[answer, context])
|
392 |
+
# ask.click(fn=do_ask, inputs=[query, buildb,
|
393 |
+
# dataset], outputs=[answer])
|
394 |
+
|
395 |
+
# demo.queue(concurrency_count=20)
|
396 |
+
# demo.launch(show_error=True)
|