Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
+
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
|
5 |
+
repo_id = "paascorb/image-detection-efficientdet"
|
6 |
+
|
7 |
+
learner = from_pretrained_fastai(repo_id)
|
8 |
+
labels = learner.dls.vocab
|
9 |
+
|
10 |
+
# Definimos una función que se encarga de llevar a cabo las predicciones
|
11 |
+
def predict(img):
|
12 |
+
img = PIL.Image.open('mapaches/test/images/raccoon-190.jpg')
|
13 |
+
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
|
14 |
+
pred_dict = models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
15 |
+
return pred_dict["img"]
|
16 |
+
|
17 |
+
# Creamos la interfaz y la lanzamos.
|
18 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape(128,128)),examples=['buildings.jpg','forest.jpg']).launch(share=False)
|