|
from huggingface_hub import from_pretrained_fastai |
|
import gradio as gr |
|
from fastai.vision.all import * |
|
from icevision.all import * |
|
from icevision.models.checkpoint import * |
|
import PIL |
|
|
|
checkpoint_path = "efficientdetMapaches.pth" |
|
model = models.ross.efficientdet.model(backbone=models.ross.efficientdet.backbones.tf_lite0(pretrained=True), |
|
num_classes=2, |
|
img_size=384) |
|
|
|
state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu')) |
|
model.load_state_dict(state_dict) |
|
|
|
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()]) |
|
|
|
|
|
def predict(img): |
|
img = PIL.Image.fromarray(img, "RGB") |
|
pred_dict = model_type(img, infer_tfms, model.to("cpu"), class_map=ClassMap(['raccoon']), detection_threshold=0.5) |
|
return pred_dict["img"] |
|
|
|
|
|
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")], |
|
examples=['raccoon-161.jpg','raccoon-162.jpg']).launch(share=False) |