pOps-space / pops.py
moulichand's picture
Fix: Ensure Object is Correctly Placed in Scene without Texturing when the texture is not provided
5a0d971 verified
raw
history blame
10.5 kB
import gradio as gr
import torch
from PIL import Image
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
from huggingface_hub import hf_hub_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
from model import pops_utils
from model.pipeline_pops import pOpsPipeline
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
prior_scene_repo: str = 'models/scene/learned_prior.pth'
prior_repo = "pOpsPaper/operators"
# gpu = torch.device('cuda')
# cpu = torch.device('cpu')
class PopsPipelines:
def __init__(self):
weight_dtype = torch.float16
self.weight_dtype = weight_dtype
device = 'cpu' #torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.device = 'cuda' #device
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
subfolder='image_encoder',
torch_dtype=weight_dtype).eval()
self.image_encoder.requires_grad_(False)
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
subfolder='image_processor')
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
subfolder='text_encoder',
torch_dtype=weight_dtype).eval().to(device)
# Load full model for vis
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
subfolder='unet').to(torch.float16).to(device)
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
torch_dtype=torch.float16)
self.decoder = self.decoder.to(device)
self.priors_dict = {
'texturing':{'repo':prior_texture_repo},
'instruct': {'repo': prior_instruct_repo},
'scene': {'repo':prior_scene_repo}
}
for prior_type in self.priors_dict:
prior_path = self.priors_dict[prior_type]['repo']
prior = PriorTransformer.from_pretrained(
kandinsky_prior_repo, subfolder="prior"
)
# Load from huggingface
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
prior_state_dict = torch.load(prior_path, map_location=device)
prior.load_state_dict(prior_state_dict, strict=False)
prior.eval()
prior = prior.to(weight_dtype)
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
prior=prior,
image_encoder=self.image_encoder,
torch_dtype=torch.float16)
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
def process_image(self, input_path):
if input_path is None:
return None
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
self.weight_dtype)
return image
def process_text(self, text):
self.text_encoder.to('cuda')
text_inputs = self.tokenizer(
text,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
mask = text_inputs.attention_mask.bool() # [0]
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
text_encoder_hidden_states = text_encoder_output.last_hidden_state
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
self.text_encoder.to('cpu')
return text_encoder_concat
def run_binary(self, input_a, input_b, prior_type):
# Move pipeline to GPU
pipeline = self.priors_dict[prior_type]['pipeline']
pipeline.to('cuda')
self.image_encoder.to('cuda')
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
self.image_encoder,
pipeline.prior.clip_mean.detach(),
pipeline.prior.clip_std.detach())
negative_input_embeds = torch.zeros_like(input_image_embeds)
negative_hidden_states = torch.zeros_like(input_hidden_state)
guidance_scale = 1.0
if prior_type == 'texturing':
guidance_scale = 8.0
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
negative_input_embeds=negative_input_embeds,
negative_input_hidden_states=negative_hidden_states,
num_inference_steps=25,
num_images_per_prompt=1,
guidance_scale=guidance_scale)
# Optional
if prior_type == 'scene':
# Scene is the closet to what avg represents for a background image so incorporate that as well
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
alpha = 0.4
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
# Move pipeline to CPU
pipeline.to('cpu')
self.image_encoder.to('cpu')
return img_emb
def run_instruct(self, input_a, text):
text_encodings = self.process_text(text)
# Move pipeline to GPU
instruct_pipeline = self.priors_dict['instruct']['pipeline']
instruct_pipeline.to('cuda')
self.image_encoder.to('cuda')
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
self.image_encoder,
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
concat_hidden_states=text_encodings)
negative_input_embeds = torch.zeros_like(input_image_embeds)
negative_hidden_states = torch.zeros_like(input_hidden_state)
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
negative_input_embeds=negative_input_embeds,
negative_input_hidden_states=negative_hidden_states,
num_inference_steps=25,
num_images_per_prompt=1,
guidance_scale=1.0)
# Move pipeline to CPU
instruct_pipeline.to('cpu')
self.image_encoder.to('cpu')
return img_emb
def render(self, img_emb):
self.decoder.to('cuda')
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
num_inference_steps=50, height=512,
width=512, guidance_scale=4).images
self.decoder.to('cpu')
return images[0]
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
# Process both inputs
image_object = self.process_image(image_object_path)
image_texture = self.process_image(image_texture_path)
if image_object is None:
raise gr.Error('Object image is required')
current_emb = None
if image_texture is None:
instruct_input = image_object
else:
# Run texturing
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
instruct_input = current_emb.image_embeds
if text_instruct != '':
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
if current_emb is None:
raise gr.Error('At least one of the inputs is required')
# Render as image
image = self.render(current_emb)
return image
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
image_object = self.process_image(image_object_path)
image_texture = self.process_image(image_texture_path)
image_scene = self.process_image(image_scene_path)
if image_object is None:
raise gr.Error('Object image is required')
current_emb = None
# If both object and scene images are provided, run scene processing
if image_scene is not None:
current_emb = self.run_binary(input_a=image_object, input_b=image_scene, prior_type='scene')
scene_input = current_emb.image_embeds
else:
scene_input = image_object
# If a texture image is provided, apply texturing
if image_texture is not None:
current_emb = self.run_binary(input_a=scene_input, input_b=image_texture, prior_type='texturing')
if current_emb is None:
raise gr.Error('At least one of the images is required')
# Render the final image
image = self.render(current_emb)
return image