p4vv37 commited on
Commit
6e27413
1 Parent(s): 3cb13f6
Files changed (4) hide show
  1. app.py +31 -3
  2. images/bottle.png +0 -0
  3. requirements.txt +3 -0
  4. zero123.py +666 -0
app.py CHANGED
@@ -1,7 +1,35 @@
1
  import gradio as gr
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  iface.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ import diffusers
4
+ from diffusers import DiffusionPipeline
5
+ from zero123 import Zero123Pipeline
6
+ diffusers.Zero123Pipeline = Zero123Pipeline
7
 
8
+ def generate_view(source_img, elevation, azimuth, camera_distance, num_inference_steps):
9
+
10
+ # Prepare pipeline
11
+ pipeline = DiffusionPipeline.from_pretrained("ashawkey/stable-zero123-diffusers",
12
+ torch_dtype=torch.float16, trust_remote_code=True)
13
+ pipeline.to('cuda:0')
14
 
15
+ # Prepare input data:
16
+ image = source_img.resize((256, 256))
17
+
18
+
19
+ # Generate and save images:
20
+ images = pipeline([image],
21
+ torch.tensor([elevation], dtype=torch.float16).to('cuda:0'),
22
+ torch.tensor([azimuth], dtype=torch.float16).to('cuda:0'),
23
+ torch.tensor([camera_distance], dtype=torch.float16).to('cuda:0'),
24
+ num_inference_steps=int(num_inference_steps)).images
25
+
26
+ return images[0]
27
+
28
+
29
+ iface = gr.Interface(fn=generate_view, inputs=[gr.Image(type="pil", mode="RGB", value="images/bottle.png"),
30
+ gr.Number(label="elevation", value=0.),
31
+ gr.Number(label="azimuth", value=45.),
32
+ gr.Number(label="camera_distance", value=1.2),
33
+ gr.Number(label="num_inference_steps", value=20, type="int")],
34
+ outputs=gr.Image())
35
  iface.launch()
images/bottle.png ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ torch
3
+ diffusers
zero123.py ADDED
@@ -0,0 +1,666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ import math
17
+ import warnings
18
+ from typing import Any, Callable, Dict, List, Optional, Union
19
+
20
+ import PIL
21
+ import torch
22
+ import torchvision.transforms.functional as TF
23
+ from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config
24
+ from diffusers.image_processor import VaeImageProcessor
25
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
26
+ from diffusers.models.modeling_utils import ModelMixin
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
29
+ from diffusers.pipelines.stable_diffusion.safety_checker import (
30
+ StableDiffusionSafetyChecker,
31
+ )
32
+ from diffusers.schedulers import KarrasDiffusionSchedulers
33
+ from diffusers.utils import deprecate, is_accelerate_available, logging
34
+ from diffusers.utils.torch_utils import randn_tensor
35
+ from packaging import version
36
+ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ class CLIPCameraProjection(ModelMixin, ConfigMixin):
42
+ """
43
+ A Projection layer for CLIP embedding and camera embedding.
44
+
45
+ Parameters:
46
+ embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed`
47
+ additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
48
+ projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
49
+ additional_embeddings`.
50
+ """
51
+
52
+ @register_to_config
53
+ def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4):
54
+ super().__init__()
55
+ self.embedding_dim = embedding_dim
56
+ self.additional_embeddings = additional_embeddings
57
+
58
+ self.input_dim = self.embedding_dim + self.additional_embeddings
59
+ self.output_dim = self.embedding_dim
60
+
61
+ self.proj = torch.nn.Linear(self.input_dim, self.output_dim)
62
+
63
+ def forward(
64
+ self,
65
+ embedding: torch.FloatTensor,
66
+ ):
67
+ """
68
+ The [`PriorTransformer`] forward method.
69
+
70
+ Args:
71
+ hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`):
72
+ The currently input embeddings.
73
+
74
+ Returns:
75
+ The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`).
76
+ """
77
+ proj_embedding = self.proj(embedding)
78
+ return proj_embedding
79
+
80
+
81
+ class Zero123Pipeline(DiffusionPipeline):
82
+ r"""
83
+ Pipeline to generate variations from an input image using Stable Diffusion.
84
+
85
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
86
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
87
+
88
+ Args:
89
+ vae ([`AutoencoderKL`]):
90
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
91
+ image_encoder ([`CLIPVisionModelWithProjection`]):
92
+ Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
93
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
94
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
95
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
96
+ scheduler ([`SchedulerMixin`]):
97
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
98
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
99
+ safety_checker ([`StableDiffusionSafetyChecker`]):
100
+ Classification module that estimates whether generated images could be considered offensive or harmful.
101
+ Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
102
+ feature_extractor ([`CLIPImageProcessor`]):
103
+ Model that extracts features from generated images to be used as inputs for the `safety_checker`.
104
+ """
105
+ # TODO: feature_extractor is required to encode images (if they are in PIL format),
106
+ # we should give a descriptive message if the pipeline doesn't have one.
107
+ _optional_components = ["safety_checker"]
108
+
109
+ def __init__(
110
+ self,
111
+ vae: AutoencoderKL,
112
+ image_encoder: CLIPVisionModelWithProjection,
113
+ unet: UNet2DConditionModel,
114
+ scheduler: KarrasDiffusionSchedulers,
115
+ safety_checker: StableDiffusionSafetyChecker,
116
+ feature_extractor: CLIPImageProcessor,
117
+ clip_camera_projection: CLIPCameraProjection,
118
+ requires_safety_checker: bool = True,
119
+ ):
120
+ super().__init__()
121
+
122
+ if safety_checker is None and requires_safety_checker:
123
+ logger.warn(
124
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
125
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
126
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
127
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
128
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
129
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
130
+ )
131
+
132
+ if safety_checker is not None and feature_extractor is None:
133
+ raise ValueError(
134
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
135
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
136
+ )
137
+
138
+ is_unet_version_less_0_9_0 = hasattr(
139
+ unet.config, "_diffusers_version"
140
+ ) and version.parse(
141
+ version.parse(unet.config._diffusers_version).base_version
142
+ ) < version.parse(
143
+ "0.9.0.dev0"
144
+ )
145
+ is_unet_sample_size_less_64 = (
146
+ hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
147
+ )
148
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
149
+ deprecation_message = (
150
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
151
+ " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
152
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
153
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
154
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
155
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
156
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
157
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
158
+ " the `unet/config.json` file"
159
+ )
160
+ deprecate(
161
+ "sample_size<64", "1.0.0", deprecation_message, standard_warn=False
162
+ )
163
+ new_config = dict(unet.config)
164
+ new_config["sample_size"] = 64
165
+ unet._internal_dict = FrozenDict(new_config)
166
+
167
+ self.register_modules(
168
+ vae=vae,
169
+ image_encoder=image_encoder,
170
+ unet=unet,
171
+ scheduler=scheduler,
172
+ safety_checker=safety_checker,
173
+ feature_extractor=feature_extractor,
174
+ clip_camera_projection=clip_camera_projection,
175
+ )
176
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
177
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
178
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
179
+
180
+ def enable_sequential_cpu_offload(self, gpu_id=0):
181
+ r"""
182
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
183
+ text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
184
+ `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
185
+ """
186
+ if is_accelerate_available():
187
+ from accelerate import cpu_offload
188
+ else:
189
+ raise ImportError("Please install accelerate via `pip install accelerate`")
190
+
191
+ device = torch.device(f"cuda:{gpu_id}")
192
+
193
+ for cpu_offloaded_model in [
194
+ self.unet,
195
+ self.image_encoder,
196
+ self.vae,
197
+ self.safety_checker,
198
+ ]:
199
+ if cpu_offloaded_model is not None:
200
+ cpu_offload(cpu_offloaded_model, device)
201
+
202
+ @property
203
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
204
+ def _execution_device(self):
205
+ r"""
206
+ Returns the device on which the pipeline's models will be executed. After calling
207
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
208
+ hooks.
209
+ """
210
+ if not hasattr(self.unet, "_hf_hook"):
211
+ return self.device
212
+ for module in self.unet.modules():
213
+ if (
214
+ hasattr(module, "_hf_hook")
215
+ and hasattr(module._hf_hook, "execution_device")
216
+ and module._hf_hook.execution_device is not None
217
+ ):
218
+ return torch.device(module._hf_hook.execution_device)
219
+ return self.device
220
+
221
+ def _encode_image(
222
+ self,
223
+ image,
224
+ elevation,
225
+ azimuth,
226
+ distance,
227
+ device,
228
+ num_images_per_prompt,
229
+ do_classifier_free_guidance,
230
+ clip_image_embeddings=None,
231
+ image_camera_embeddings=None,
232
+ ):
233
+ dtype = next(self.image_encoder.parameters()).dtype
234
+
235
+ if image_camera_embeddings is None:
236
+ if image is None:
237
+ assert clip_image_embeddings is not None
238
+ image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype)
239
+ else:
240
+ if not isinstance(image, torch.Tensor):
241
+ image = self.feature_extractor(
242
+ images=image, return_tensors="pt"
243
+ ).pixel_values
244
+
245
+ image = image.to(device=device, dtype=dtype)
246
+ image_embeddings = self.image_encoder(image).image_embeds
247
+ image_embeddings = image_embeddings.unsqueeze(1)
248
+
249
+ bs_embed, seq_len, _ = image_embeddings.shape
250
+
251
+ if isinstance(elevation, float):
252
+ elevation = torch.as_tensor(
253
+ [elevation] * bs_embed, dtype=dtype, device=device
254
+ )
255
+ if isinstance(azimuth, float):
256
+ azimuth = torch.as_tensor(
257
+ [azimuth] * bs_embed, dtype=dtype, device=device
258
+ )
259
+ if isinstance(distance, float):
260
+ distance = torch.as_tensor(
261
+ [distance] * bs_embed, dtype=dtype, device=device
262
+ )
263
+
264
+ camera_embeddings = torch.stack(
265
+ [
266
+ torch.deg2rad(elevation),
267
+ torch.sin(torch.deg2rad(azimuth)),
268
+ torch.cos(torch.deg2rad(azimuth)),
269
+ distance,
270
+ ],
271
+ dim=-1,
272
+ )[:, None, :]
273
+
274
+ image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1)
275
+
276
+ # project (image, camera) embeddings to the same dimension as clip embeddings
277
+ image_embeddings = self.clip_camera_projection(image_embeddings)
278
+ else:
279
+ image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype)
280
+ bs_embed, seq_len, _ = image_embeddings.shape
281
+
282
+ # duplicate image embeddings for each generation per prompt, using mps friendly method
283
+ image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
284
+ image_embeddings = image_embeddings.view(
285
+ bs_embed * num_images_per_prompt, seq_len, -1
286
+ )
287
+
288
+ if do_classifier_free_guidance:
289
+ negative_prompt_embeds = torch.zeros_like(image_embeddings)
290
+
291
+ # For classifier free guidance, we need to do two forward passes.
292
+ # Here we concatenate the unconditional and text embeddings into a single batch
293
+ # to avoid doing two forward passes
294
+ image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
295
+
296
+ return image_embeddings
297
+
298
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
299
+ def run_safety_checker(self, image, device, dtype):
300
+ if self.safety_checker is None:
301
+ has_nsfw_concept = None
302
+ else:
303
+ if torch.is_tensor(image):
304
+ feature_extractor_input = self.image_processor.postprocess(
305
+ image, output_type="pil"
306
+ )
307
+ else:
308
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
309
+ safety_checker_input = self.feature_extractor(
310
+ feature_extractor_input, return_tensors="pt"
311
+ ).to(device)
312
+ image, has_nsfw_concept = self.safety_checker(
313
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
314
+ )
315
+ return image, has_nsfw_concept
316
+
317
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
318
+ def decode_latents(self, latents):
319
+ warnings.warn(
320
+ "The decode_latents method is deprecated and will be removed in a future version. Please"
321
+ " use VaeImageProcessor instead",
322
+ FutureWarning,
323
+ )
324
+ latents = 1 / self.vae.config.scaling_factor * latents
325
+ image = self.vae.decode(latents, return_dict=False)[0]
326
+ image = (image / 2 + 0.5).clamp(0, 1)
327
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
328
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
329
+ return image
330
+
331
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
332
+ def prepare_extra_step_kwargs(self, generator, eta):
333
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
334
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
335
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
336
+ # and should be between [0, 1]
337
+
338
+ accepts_eta = "eta" in set(
339
+ inspect.signature(self.scheduler.step).parameters.keys()
340
+ )
341
+ extra_step_kwargs = {}
342
+ if accepts_eta:
343
+ extra_step_kwargs["eta"] = eta
344
+
345
+ # check if the scheduler accepts generator
346
+ accepts_generator = "generator" in set(
347
+ inspect.signature(self.scheduler.step).parameters.keys()
348
+ )
349
+ if accepts_generator:
350
+ extra_step_kwargs["generator"] = generator
351
+ return extra_step_kwargs
352
+
353
+ def check_inputs(self, image, height, width, callback_steps):
354
+ # TODO: check image size or adjust image size to (height, width)
355
+
356
+ if height % 8 != 0 or width % 8 != 0:
357
+ raise ValueError(
358
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
359
+ )
360
+
361
+ if (callback_steps is None) or (
362
+ callback_steps is not None
363
+ and (not isinstance(callback_steps, int) or callback_steps <= 0)
364
+ ):
365
+ raise ValueError(
366
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
367
+ f" {type(callback_steps)}."
368
+ )
369
+
370
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
371
+ def prepare_latents(
372
+ self,
373
+ batch_size,
374
+ num_channels_latents,
375
+ height,
376
+ width,
377
+ dtype,
378
+ device,
379
+ generator,
380
+ latents=None,
381
+ ):
382
+ shape = (
383
+ batch_size,
384
+ num_channels_latents,
385
+ height // self.vae_scale_factor,
386
+ width // self.vae_scale_factor,
387
+ )
388
+ if isinstance(generator, list) and len(generator) != batch_size:
389
+ raise ValueError(
390
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
391
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
392
+ )
393
+
394
+ if latents is None:
395
+ latents = randn_tensor(
396
+ shape, generator=generator, device=device, dtype=dtype
397
+ )
398
+ else:
399
+ latents = latents.to(device)
400
+
401
+ # scale the initial noise by the standard deviation required by the scheduler
402
+ latents = latents * self.scheduler.init_noise_sigma
403
+ return latents
404
+
405
+ def _get_latent_model_input(
406
+ self,
407
+ latents: torch.FloatTensor,
408
+ image: Optional[
409
+ Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
410
+ ],
411
+ num_images_per_prompt: int,
412
+ do_classifier_free_guidance: bool,
413
+ image_latents: Optional[torch.FloatTensor] = None,
414
+ ):
415
+ if isinstance(image, PIL.Image.Image):
416
+ image_pt = TF.to_tensor(image).unsqueeze(0).to(latents)
417
+ elif isinstance(image, list):
418
+ image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to(
419
+ latents
420
+ )
421
+ elif isinstance(image, torch.Tensor):
422
+ image_pt = image
423
+ else:
424
+ image_pt = None
425
+
426
+ if image_pt is None:
427
+ assert image_latents is not None
428
+ image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0)
429
+ else:
430
+ image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1]
431
+ # FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor
432
+ # but zero123 was not trained this way
433
+ image_pt = self.vae.encode(image_pt).latent_dist.mode()
434
+ image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0)
435
+ if do_classifier_free_guidance:
436
+ latent_model_input = torch.cat(
437
+ [
438
+ torch.cat([latents, latents], dim=0),
439
+ torch.cat([torch.zeros_like(image_pt), image_pt], dim=0),
440
+ ],
441
+ dim=1,
442
+ )
443
+ else:
444
+ latent_model_input = torch.cat([latents, image_pt], dim=1)
445
+
446
+ return latent_model_input
447
+
448
+ @torch.no_grad()
449
+ def __call__(
450
+ self,
451
+ image: Optional[
452
+ Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
453
+ ] = None,
454
+ elevation: Optional[Union[float, torch.FloatTensor]] = None,
455
+ azimuth: Optional[Union[float, torch.FloatTensor]] = None,
456
+ distance: Optional[Union[float, torch.FloatTensor]] = None,
457
+ height: Optional[int] = None,
458
+ width: Optional[int] = None,
459
+ num_inference_steps: int = 50,
460
+ guidance_scale: float = 3.0,
461
+ num_images_per_prompt: int = 1,
462
+ eta: float = 0.0,
463
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
464
+ latents: Optional[torch.FloatTensor] = None,
465
+ clip_image_embeddings: Optional[torch.FloatTensor] = None,
466
+ image_camera_embeddings: Optional[torch.FloatTensor] = None,
467
+ image_latents: Optional[torch.FloatTensor] = None,
468
+ output_type: Optional[str] = "pil",
469
+ return_dict: bool = True,
470
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
471
+ callback_steps: int = 1,
472
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
473
+ ):
474
+ r"""
475
+ Function invoked when calling the pipeline for generation.
476
+
477
+ Args:
478
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
479
+ The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
480
+ configuration of
481
+ [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
482
+ `CLIPImageProcessor`
483
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
484
+ The height in pixels of the generated image.
485
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
486
+ The width in pixels of the generated image.
487
+ num_inference_steps (`int`, *optional*, defaults to 50):
488
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
489
+ expense of slower inference.
490
+ guidance_scale (`float`, *optional*, defaults to 7.5):
491
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
492
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
493
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
494
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
495
+ usually at the expense of lower image quality.
496
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
497
+ The number of images to generate per prompt.
498
+ eta (`float`, *optional*, defaults to 0.0):
499
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
500
+ [`schedulers.DDIMScheduler`], will be ignored for others.
501
+ generator (`torch.Generator`, *optional*):
502
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
503
+ to make generation deterministic.
504
+ latents (`torch.FloatTensor`, *optional*):
505
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
506
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
507
+ tensor will ge generated by sampling using the supplied random `generator`.
508
+ output_type (`str`, *optional*, defaults to `"pil"`):
509
+ The output format of the generate image. Choose between
510
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
511
+ return_dict (`bool`, *optional*, defaults to `True`):
512
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
513
+ plain tuple.
514
+ callback (`Callable`, *optional*):
515
+ A function that will be called every `callback_steps` steps during inference. The function will be
516
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
517
+ callback_steps (`int`, *optional*, defaults to 1):
518
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
519
+ called at every step.
520
+
521
+ Returns:
522
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
523
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
524
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
525
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
526
+ (nsfw) content, according to the `safety_checker`.
527
+ """
528
+ # 0. Default height and width to unet
529
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
530
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
531
+
532
+ # 1. Check inputs. Raise error if not correct
533
+ # TODO: check input elevation, azimuth, and distance
534
+ # TODO: check image, clip_image_embeddings, image_latents
535
+ self.check_inputs(image, height, width, callback_steps)
536
+
537
+ # 2. Define call parameters
538
+ if isinstance(image, PIL.Image.Image):
539
+ batch_size = 1
540
+ elif isinstance(image, list):
541
+ batch_size = len(image)
542
+ elif isinstance(image, torch.Tensor):
543
+ batch_size = image.shape[0]
544
+ else:
545
+ assert image_latents is not None
546
+ assert (
547
+ clip_image_embeddings is not None or image_camera_embeddings is not None
548
+ )
549
+ batch_size = image_latents.shape[0]
550
+
551
+ device = self._execution_device
552
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
553
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
554
+ # corresponds to doing no classifier free guidance.
555
+ do_classifier_free_guidance = guidance_scale > 1.0
556
+
557
+ # 3. Encode input image
558
+ if isinstance(image, PIL.Image.Image) or isinstance(image, list):
559
+ pil_image = image
560
+ elif isinstance(image, torch.Tensor):
561
+ pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
562
+ else:
563
+ pil_image = None
564
+ image_embeddings = self._encode_image(
565
+ pil_image,
566
+ elevation,
567
+ azimuth,
568
+ distance,
569
+ device,
570
+ num_images_per_prompt,
571
+ do_classifier_free_guidance,
572
+ clip_image_embeddings,
573
+ image_camera_embeddings,
574
+ )
575
+
576
+ # 4. Prepare timesteps
577
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
578
+ timesteps = self.scheduler.timesteps
579
+
580
+ # 5. Prepare latent variables
581
+ # num_channels_latents = self.unet.config.in_channels
582
+ num_channels_latents = 4 # FIXME: hard-coded
583
+ latents = self.prepare_latents(
584
+ batch_size * num_images_per_prompt,
585
+ num_channels_latents,
586
+ height,
587
+ width,
588
+ image_embeddings.dtype,
589
+ device,
590
+ generator,
591
+ latents,
592
+ )
593
+
594
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
595
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
596
+
597
+ # 7. Denoising loop
598
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
599
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
600
+ for i, t in enumerate(timesteps):
601
+ # expand the latents if we are doing classifier free guidance
602
+ latent_model_input = self._get_latent_model_input(
603
+ latents,
604
+ image,
605
+ num_images_per_prompt,
606
+ do_classifier_free_guidance,
607
+ image_latents,
608
+ )
609
+ latent_model_input = self.scheduler.scale_model_input(
610
+ latent_model_input, t
611
+ )
612
+
613
+ # predict the noise residual
614
+ noise_pred = self.unet(
615
+ latent_model_input,
616
+ t,
617
+ encoder_hidden_states=image_embeddings,
618
+ cross_attention_kwargs=cross_attention_kwargs,
619
+ ).sample
620
+
621
+ # perform guidance
622
+ if do_classifier_free_guidance:
623
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
624
+ noise_pred = noise_pred_uncond + guidance_scale * (
625
+ noise_pred_text - noise_pred_uncond
626
+ )
627
+
628
+ # compute the previous noisy sample x_t -> x_t-1
629
+ latents = self.scheduler.step(
630
+ noise_pred, t, latents, **extra_step_kwargs
631
+ ).prev_sample
632
+
633
+ # call the callback, if provided
634
+ if i == len(timesteps) - 1 or (
635
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
636
+ ):
637
+ progress_bar.update()
638
+ if callback is not None and i % callback_steps == 0:
639
+ callback(i, t, latents)
640
+
641
+ if not output_type == "latent":
642
+ image = self.vae.decode(
643
+ latents / self.vae.config.scaling_factor, return_dict=False
644
+ )[0]
645
+ image, has_nsfw_concept = self.run_safety_checker(
646
+ image, device, image_embeddings.dtype
647
+ )
648
+ else:
649
+ image = latents
650
+ has_nsfw_concept = None
651
+
652
+ if has_nsfw_concept is None:
653
+ do_denormalize = [True] * image.shape[0]
654
+ else:
655
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
656
+
657
+ image = self.image_processor.postprocess(
658
+ image, output_type=output_type, do_denormalize=do_denormalize
659
+ )
660
+
661
+ if not return_dict:
662
+ return (image, has_nsfw_concept)
663
+
664
+ return StableDiffusionPipelineOutput(
665
+ images=image, nsfw_content_detected=has_nsfw_concept
666
+ )