Spaces:
Sleeping
Sleeping
DJOMGA TOUKO Peter Charles
commited on
Commit
•
6748588
1
Parent(s):
c358276
initial commit
Browse files- .gitattributes +1 -0
- .gitignore +4 -0
- .streamlit/config.toml +4 -0
- README.md +35 -0
- app.py +147 -0
- app_access_db.py +23 -0
- app_config.py +45 -0
- irembo_application_4.db +3 -0
- openai-business-chat-06-utilitaire.ipynb +0 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.db filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
processed/embeddings.csv
|
2 |
+
processed/scraped.csv
|
3 |
+
.DS_Store
|
4 |
+
__pycache__
|
.streamlit/config.toml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[server]
|
2 |
+
runOnSave = true
|
3 |
+
headless = true
|
4 |
+
maxUploadSize = 2000
|
README.md
CHANGED
@@ -10,3 +10,38 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# AI Chatbot Prototype on Business Insights
|
17 |
+
|
18 |
+
Having a sample database with a structure
|
19 |
+
```
|
20 |
+
- application
|
21 |
+
- app_number
|
22 |
+
- amount
|
23 |
+
- amount_paid
|
24 |
+
- state. (APPROVED, REJECTED, PENDING_PAYMENT, PAID)
|
25 |
+
- office_code [FK]
|
26 |
+
- service_code [FK]
|
27 |
+
- date_created
|
28 |
+
- date_paid
|
29 |
+
- date_processed
|
30 |
+
- office
|
31 |
+
- office_name
|
32 |
+
- office_location_code [FK]
|
33 |
+
- location
|
34 |
+
- location_name
|
35 |
+
- location_code
|
36 |
+
- service
|
37 |
+
- service_code
|
38 |
+
- service_name
|
39 |
+
```
|
40 |
+
|
41 |
+
The chatbot will provide answers from that database
|
42 |
+
|
43 |
+
```
|
44 |
+
a- The number of applications rejected in a location during the current month
|
45 |
+
b- The trend of applications in particular states, for a location
|
46 |
+
c- Any question you think relevant from this DB
|
47 |
+
```
|
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from openai import OpenAI
|
3 |
+
from app_config import *
|
4 |
+
from app_access_db import *
|
5 |
+
|
6 |
+
|
7 |
+
model = "gpt-3.5-turbo"
|
8 |
+
|
9 |
+
# ------------------------------------------------------------------------------------------------
|
10 |
+
# SIDEBAR
|
11 |
+
# ------------------------------------------------------------------------------------------------
|
12 |
+
st.sidebar.title('OpenAI Business Chat')
|
13 |
+
st.sidebar.write('This chat bot is build with Tools and Function feature of OpenAI to be able to answer question regarding applications and performance of officers')
|
14 |
+
st.sidebar.markdown("""
|
15 |
+
### Having a sample database with a structure
|
16 |
+
- application
|
17 |
+
- app_number
|
18 |
+
- amount
|
19 |
+
- amount_paid
|
20 |
+
- state. (APPROVED, REJECTED, PENDING_PAYMENT, PAID)
|
21 |
+
- office_code [FK]
|
22 |
+
- service_code [FK]
|
23 |
+
- date_created
|
24 |
+
- date_paid
|
25 |
+
- date_processed
|
26 |
+
- office
|
27 |
+
- office_name
|
28 |
+
- office_location_code [FK]
|
29 |
+
- location
|
30 |
+
- location_name
|
31 |
+
- location_code
|
32 |
+
- service
|
33 |
+
- service_code
|
34 |
+
- service_name
|
35 |
+
|
36 |
+
### The chatbot will provide answers from that database
|
37 |
+
- The number of applications rejected is a location during the current month
|
38 |
+
- The trend of applications in particular states, for a location
|
39 |
+
- Any question you think relevant from this DB
|
40 |
+
""")
|
41 |
+
|
42 |
+
def onchange_openai_key():
|
43 |
+
print(st.session_state.openai_key)
|
44 |
+
|
45 |
+
openai_key = st.sidebar.text_input('OpenAI key', on_change=onchange_openai_key, key='openai_key')
|
46 |
+
|
47 |
+
def submit_openai_key(model=model):
|
48 |
+
if(openai_key == None or openai_key==''):
|
49 |
+
st.sidebar.write('Please provide the key before')
|
50 |
+
return
|
51 |
+
else:
|
52 |
+
client = OpenAI(api_key=openai_key)
|
53 |
+
model = model
|
54 |
+
completion = client.chat.completions.create(
|
55 |
+
model=model,
|
56 |
+
messages=[
|
57 |
+
{"role": "system", "content": "You are an assistant giving simple and short answer for question of child"},
|
58 |
+
{"role": "user", "content": "count from 0 to 10"}
|
59 |
+
]
|
60 |
+
)
|
61 |
+
st.sidebar.write(f'Simple count : {completion.choices[0].message.content}')
|
62 |
+
|
63 |
+
submit_key = st.sidebar.button(label='Submit', on_click=submit_openai_key)
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
# ------------------------------------------------------------------------------------------------
|
68 |
+
# CHAT
|
69 |
+
# ------------------------------------------------------------------------------------------------
|
70 |
+
|
71 |
+
st.title('OpenAI Business Chat')
|
72 |
+
st.write(f'Ask any question that can be answer by the LLM {model}.')
|
73 |
+
|
74 |
+
|
75 |
+
def askQuestion(model=model, question=''):
|
76 |
+
if(openai_key == None or openai_key==''):
|
77 |
+
print('Please provide the key before')
|
78 |
+
return 'LLM API is not defined. Please provide the key before'
|
79 |
+
else:
|
80 |
+
client = OpenAI(api_key=openai_key)
|
81 |
+
model = model
|
82 |
+
completion = client.chat.completions.create(
|
83 |
+
model=model,
|
84 |
+
messages=[
|
85 |
+
{"role": "system", "content": f'{query_context}'},
|
86 |
+
{"role": "user", "content": f'{question}'}
|
87 |
+
]
|
88 |
+
)
|
89 |
+
return completion.choices[0].message.content
|
90 |
+
|
91 |
+
class AssistantMessage:
|
92 |
+
def __init__(self):
|
93 |
+
self.sql : str
|
94 |
+
self.response_data : DataFrame
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
def displayAssistantMessage( assistantMessage: AssistantMessage):
|
99 |
+
with st.chat_message("assistant"):
|
100 |
+
st.code(assistantMessage.sql, language='sql')
|
101 |
+
st.code(assistantMessage.response_data, language='markdown')
|
102 |
+
if assistantMessage.response_data.columns.size == 2:
|
103 |
+
st.bar_chart(assistantMessage.response_data, x=assistantMessage.response_data.columns[0], y=assistantMessage.response_data.columns[1])
|
104 |
+
if assistantMessage.response_data.columns.size == 1:
|
105 |
+
st.metric(label=assistantMessage.response_data.columns[0], value=f'{assistantMessage.response_data.values[0]}')
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
# Initialize chat history
|
110 |
+
if "messages" not in st.session_state:
|
111 |
+
st.session_state.messages = []
|
112 |
+
|
113 |
+
# Display chat messages from history on app rerun
|
114 |
+
for message in st.session_state.messages:
|
115 |
+
if message["role"] == "user":
|
116 |
+
with st.chat_message(message["role"]):
|
117 |
+
st.markdown(message["content"])
|
118 |
+
elif message["role"] == "assistant":
|
119 |
+
displayAssistantMessage(message["content"])
|
120 |
+
|
121 |
+
# React to user input
|
122 |
+
if prompt := st.chat_input("What is up?"):
|
123 |
+
with st.status('Running', expanded=True) as status:
|
124 |
+
# Display user message in chat message container
|
125 |
+
st.chat_message("user").markdown(prompt)
|
126 |
+
# Add user message to chat history
|
127 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
128 |
+
|
129 |
+
response = askQuestion(question=prompt)
|
130 |
+
st.code(response, language='sql')
|
131 |
+
response_data = run_query(response)
|
132 |
+
# Display assistant response in chat message container
|
133 |
+
assistanMsg = AssistantMessage()
|
134 |
+
assistanMsg.sql = response
|
135 |
+
assistanMsg.response_data = response_data
|
136 |
+
displayAssistantMessage(assistanMsg)
|
137 |
+
# with st.chat_message("assistant"):
|
138 |
+
# st.code(response, language='sql')
|
139 |
+
# st.caption(response_data)
|
140 |
+
# st.bar_chart(response_data, x=response_data.columns[0], y=response_data.columns[1])
|
141 |
+
|
142 |
+
# Add assistant response to chat history
|
143 |
+
st.session_state.messages.append({"role": "assistant", "content": assistanMsg})
|
144 |
+
status.update(label='Response of last question', state="complete", expanded=True)
|
145 |
+
|
146 |
+
|
147 |
+
|
app_access_db.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
from pandas import DataFrame
|
3 |
+
|
4 |
+
DB_FILENAME = 'irembo_application_4.db'
|
5 |
+
|
6 |
+
|
7 |
+
def run_query(query=''):
|
8 |
+
print(query)
|
9 |
+
conn = sqlite3.connect(DB_FILENAME)
|
10 |
+
cursor = conn.cursor()
|
11 |
+
cursor.execute(query)
|
12 |
+
#data = cursor.fetchall()
|
13 |
+
#print(data)
|
14 |
+
#conn.close()
|
15 |
+
|
16 |
+
df = DataFrame(cursor.fetchall())
|
17 |
+
df.columns = [i[0] for i in cursor.description]
|
18 |
+
|
19 |
+
# print(f'Field Names : {field_names}')
|
20 |
+
print(cursor.description)
|
21 |
+
print(df.head())
|
22 |
+
conn.close()
|
23 |
+
return df
|
app_config.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
query_context = """
|
2 |
+
Given the following SQL tables, your job is to write queries given a user’s request.
|
3 |
+
|
4 |
+
CREATE TABLE application (
|
5 |
+
application_id int,
|
6 |
+
application_number varchar(10),
|
7 |
+
amount int,
|
8 |
+
amount_paid int,
|
9 |
+
state varchar(10),
|
10 |
+
office_code varchar(10),
|
11 |
+
service_code varchar(10),
|
12 |
+
date_created datetime,
|
13 |
+
date_paid datetime,
|
14 |
+
date_processed datetime,
|
15 |
+
PRIMARY KEY (application_id),
|
16 |
+
FOREIGN KEY(office_code) REFERENCES Office(office_code),
|
17 |
+
FOREIGN KEY(service_code) REFERENCES Service(service_code)
|
18 |
+
|
19 |
+
);
|
20 |
+
|
21 |
+
CREATE TABLE Office (
|
22 |
+
office_code varchar(10),
|
23 |
+
office_name varchar(20),
|
24 |
+
location_code varchar(10),
|
25 |
+
PRIMARY KEY (office_code),
|
26 |
+
FOREIGN KEY(location_code) REFERENCES location(location_code)
|
27 |
+
);
|
28 |
+
|
29 |
+
CREATE TABLE location (
|
30 |
+
location_code varchar(10),
|
31 |
+
location_name varchar(20),
|
32 |
+
PRIMARY KEY (location_code)
|
33 |
+
);
|
34 |
+
|
35 |
+
CREATE TABLE service (
|
36 |
+
service_code varchar(10),
|
37 |
+
service_name varchar(20),
|
38 |
+
PRIMARY KEY (service_code)
|
39 |
+
);
|
40 |
+
|
41 |
+
|
42 |
+
Important, The query should be in SQLite format
|
43 |
+
Important, Your response should be only the SQL script in SQLite format with no comment and no explanation.
|
44 |
+
|
45 |
+
"""
|
irembo_application_4.db
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7b01b7ad04e5a60032efc417d0ef6165d20d9b367d0cb72bcb056e6714e0019
|
3 |
+
size 5910528
|
openai-business-chat-06-utilitaire.ipynb
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
openai
|
3 |
+
watchdog
|