fasd / tddfa /TDDFA_ONNX.py
ozyman's picture
added depth model
ddadf19
# coding: utf-8
__author__ = 'cleardusk'
import os.path as osp
import numpy as np
import cv2
import onnxruntime
from tddfa.utils.onnx import convert_to_onnx
from tddfa.utils.io import _load
from tddfa.utils.functions import (
crop_img, parse_roi_box_from_bbox, parse_roi_box_from_landmark,
)
from tddfa.utils.tddfa_util import _parse_param, similar_transform
from tddfa.bfm.bfm import BFMModel
from tddfa.bfm.bfm_onnx import convert_bfm_to_onnx
make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn)
class TDDFA_ONNX(object):
"""TDDFA_ONNX: the ONNX version of Three-D Dense Face Alignment (TDDFA)"""
def __init__(self, **kvs):
# torch.set_grad_enabled(False)
# load onnx version of BFM
bfm_fp = kvs.get('bfm_fp', make_abs_path('configs/bfm_noneck_v3.pkl'))
bfm_onnx_fp = bfm_fp.replace('.pkl', '.onnx')
if not osp.exists(bfm_onnx_fp):
convert_bfm_to_onnx(
bfm_onnx_fp,
shape_dim=kvs.get('shape_dim', 40),
exp_dim=kvs.get('exp_dim', 10)
)
self.bfm_session = onnxruntime.InferenceSession(bfm_onnx_fp, None)
# load for optimization
bfm = BFMModel(bfm_fp, shape_dim=kvs.get('shape_dim', 40), exp_dim=kvs.get('exp_dim', 10))
self.tri = bfm.tri
self.u_base, self.w_shp_base, self.w_exp_base = bfm.u_base, bfm.w_shp_base, bfm.w_exp_base
# config
self.gpu_mode = kvs.get('gpu_mode', False)
self.gpu_id = kvs.get('gpu_id', 0)
self.size = kvs.get('size', 120)
param_mean_std_fp = kvs.get(
'param_mean_std_fp', make_abs_path(f'configs/param_mean_std_62d_{self.size}x{self.size}.pkl')
)
onnx_fp = kvs.get('onnx_fp', kvs.get('checkpoint_fp').replace('.pth', '.onnx'))
# convert to onnx online if not existed
if onnx_fp is None or not osp.exists(onnx_fp):
print(f'{onnx_fp} does not exist, try to convert the `.pth` version to `.onnx` online')
onnx_fp = convert_to_onnx(**kvs)
self.session = onnxruntime.InferenceSession(onnx_fp, None)
# params normalization config
r = _load(param_mean_std_fp)
self.param_mean = r.get('mean')
self.param_std = r.get('std')
def __call__(self, img_ori, objs, **kvs):
# Crop image, forward to get the param
param_lst = []
roi_box_lst = []
crop_policy = kvs.get('crop_policy', 'box')
for obj in objs:
if crop_policy == 'box':
# by face box
roi_box = parse_roi_box_from_bbox(obj)
elif crop_policy == 'landmark':
# by landmarks
roi_box = parse_roi_box_from_landmark(obj)
else:
raise ValueError(f'Unknown crop policy {crop_policy}')
roi_box_lst.append(roi_box)
img = crop_img(img_ori, roi_box)
img = cv2.resize(img, dsize=(self.size, self.size), interpolation=cv2.INTER_LINEAR)
img = img.astype(np.float32).transpose(2, 0, 1)[np.newaxis, ...]
img = (img - 127.5) / 128.
inp_dct = {'input': img}
param = self.session.run(None, inp_dct)[0]
param = param.flatten().astype(np.float32)
param = param * self.param_std + self.param_mean # re-scale
param_lst.append(param)
return param_lst, roi_box_lst
def recon_vers(self, param_lst, roi_box_lst, **kvs):
dense_flag = kvs.get('dense_flag', False)
size = self.size
ver_lst = []
for param, roi_box in zip(param_lst, roi_box_lst):
R, offset, alpha_shp, alpha_exp = _parse_param(param)
if dense_flag:
inp_dct = {
'R': R, 'offset': offset, 'alpha_shp': alpha_shp, 'alpha_exp': alpha_exp
}
pts3d = self.bfm_session.run(None, inp_dct)[0]
pts3d = similar_transform(pts3d, roi_box, size)
else:
pts3d = R @ (self.u_base + self.w_shp_base @ alpha_shp + self.w_exp_base @ alpha_exp). \
reshape(3, -1, order='F') + offset
pts3d = similar_transform(pts3d, roi_box, size)
ver_lst.append(pts3d)
return ver_lst