|
|
|
|
|
__author__ = 'cleardusk' |
|
|
|
import os.path as osp |
|
import numpy as np |
|
import cv2 |
|
import onnxruntime |
|
|
|
from tddfa.utils.onnx import convert_to_onnx |
|
from tddfa.utils.io import _load |
|
from tddfa.utils.functions import ( |
|
crop_img, parse_roi_box_from_bbox, parse_roi_box_from_landmark, |
|
) |
|
from tddfa.utils.tddfa_util import _parse_param, similar_transform |
|
from tddfa.bfm.bfm import BFMModel |
|
from tddfa.bfm.bfm_onnx import convert_bfm_to_onnx |
|
|
|
make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn) |
|
|
|
|
|
class TDDFA_ONNX(object): |
|
"""TDDFA_ONNX: the ONNX version of Three-D Dense Face Alignment (TDDFA)""" |
|
|
|
def __init__(self, **kvs): |
|
|
|
|
|
|
|
bfm_fp = kvs.get('bfm_fp', make_abs_path('configs/bfm_noneck_v3.pkl')) |
|
bfm_onnx_fp = bfm_fp.replace('.pkl', '.onnx') |
|
if not osp.exists(bfm_onnx_fp): |
|
convert_bfm_to_onnx( |
|
bfm_onnx_fp, |
|
shape_dim=kvs.get('shape_dim', 40), |
|
exp_dim=kvs.get('exp_dim', 10) |
|
) |
|
self.bfm_session = onnxruntime.InferenceSession(bfm_onnx_fp, None) |
|
|
|
|
|
bfm = BFMModel(bfm_fp, shape_dim=kvs.get('shape_dim', 40), exp_dim=kvs.get('exp_dim', 10)) |
|
self.tri = bfm.tri |
|
self.u_base, self.w_shp_base, self.w_exp_base = bfm.u_base, bfm.w_shp_base, bfm.w_exp_base |
|
|
|
|
|
self.gpu_mode = kvs.get('gpu_mode', False) |
|
self.gpu_id = kvs.get('gpu_id', 0) |
|
self.size = kvs.get('size', 120) |
|
|
|
param_mean_std_fp = kvs.get( |
|
'param_mean_std_fp', make_abs_path(f'configs/param_mean_std_62d_{self.size}x{self.size}.pkl') |
|
) |
|
|
|
onnx_fp = kvs.get('onnx_fp', kvs.get('checkpoint_fp').replace('.pth', '.onnx')) |
|
|
|
|
|
if onnx_fp is None or not osp.exists(onnx_fp): |
|
print(f'{onnx_fp} does not exist, try to convert the `.pth` version to `.onnx` online') |
|
onnx_fp = convert_to_onnx(**kvs) |
|
|
|
self.session = onnxruntime.InferenceSession(onnx_fp, None) |
|
|
|
|
|
r = _load(param_mean_std_fp) |
|
self.param_mean = r.get('mean') |
|
self.param_std = r.get('std') |
|
|
|
def __call__(self, img_ori, objs, **kvs): |
|
|
|
param_lst = [] |
|
roi_box_lst = [] |
|
|
|
crop_policy = kvs.get('crop_policy', 'box') |
|
for obj in objs: |
|
if crop_policy == 'box': |
|
|
|
roi_box = parse_roi_box_from_bbox(obj) |
|
elif crop_policy == 'landmark': |
|
|
|
roi_box = parse_roi_box_from_landmark(obj) |
|
else: |
|
raise ValueError(f'Unknown crop policy {crop_policy}') |
|
|
|
roi_box_lst.append(roi_box) |
|
img = crop_img(img_ori, roi_box) |
|
img = cv2.resize(img, dsize=(self.size, self.size), interpolation=cv2.INTER_LINEAR) |
|
img = img.astype(np.float32).transpose(2, 0, 1)[np.newaxis, ...] |
|
img = (img - 127.5) / 128. |
|
|
|
inp_dct = {'input': img} |
|
|
|
param = self.session.run(None, inp_dct)[0] |
|
param = param.flatten().astype(np.float32) |
|
param = param * self.param_std + self.param_mean |
|
param_lst.append(param) |
|
|
|
return param_lst, roi_box_lst |
|
|
|
def recon_vers(self, param_lst, roi_box_lst, **kvs): |
|
dense_flag = kvs.get('dense_flag', False) |
|
size = self.size |
|
|
|
ver_lst = [] |
|
for param, roi_box in zip(param_lst, roi_box_lst): |
|
R, offset, alpha_shp, alpha_exp = _parse_param(param) |
|
if dense_flag: |
|
inp_dct = { |
|
'R': R, 'offset': offset, 'alpha_shp': alpha_shp, 'alpha_exp': alpha_exp |
|
} |
|
pts3d = self.bfm_session.run(None, inp_dct)[0] |
|
pts3d = similar_transform(pts3d, roi_box, size) |
|
else: |
|
pts3d = R @ (self.u_base + self.w_shp_base @ alpha_shp + self.w_exp_base @ alpha_exp). \ |
|
reshape(3, -1, order='F') + offset |
|
pts3d = similar_transform(pts3d, roi_box, size) |
|
|
|
ver_lst.append(pts3d) |
|
|
|
return ver_lst |
|
|