Oyeesh Mann Singh
Added sample.png to download for first-time users
1b2925d
import math
import gradio as gr
import easyocr
import cv2
from ultralytics import YOLO
# Load OCR model into memory
reader = easyocr.Reader(['en']) # this needs to run only once to load the model into memory
# Define constants
BOX_COLORS = {
"unchecked": (242, 48, 48),
"checked": (38, 115, 101),
"block": (242, 159, 5)
}
BOX_PADDING = 2
# Load models
DETECTION_MODEL = YOLO("models/detector-model.pt")
def detect_checkbox(image_path):
"""
Output inference image with bounding box
Args:
- image: to check for checkboxes
Return: image with bounding boxes drawn and box coordinates
"""
image = cv2.imread(image_path)
if image is None:
return image
# Predict on image
results = DETECTION_MODEL.predict(source=image, conf=0.1, iou=0.8) # Predict on image
boxes = results[0].boxes # Get bounding boxes
if len(boxes) == 0:
return image
box_coordinates = []
# Get bounding boxes
for box in boxes:
detection_class_conf = round(box.conf.item(), 2)
detection_class = list(BOX_COLORS)[int(box.cls)]
# Get start and end points of the current box
start_box = (int(box.xyxy[0][0]), int(box.xyxy[0][1]))
end_box = (int(box.xyxy[0][2]), int(box.xyxy[0][3]))
box = image[start_box[1]:end_box[1], start_box[0]: end_box[0], :]
if detection_class == 'checked':
box_coordinates.append((start_box, end_box))
# 01. DRAW BOUNDING BOX OF OBJECT
line_thickness = round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
image = cv2.rectangle(img=image,
pt1=start_box,
pt2=end_box,
color=BOX_COLORS['checked'],
thickness = line_thickness) # Draw the box with predefined colors
image = cv2.putText(img=image, org=start_box, text=detection_class, fontFace=0, color=(0,0,0), fontScale=line_thickness/3)
# 02. DRAW LABEL
text = str(detection_class_conf)
# Get text dimensions to draw wrapping box
font_thickness = max(line_thickness - 1, 1)
(text_w, text_h), _ = cv2.getTextSize(text=text, fontFace=2, fontScale=line_thickness/3, thickness=font_thickness)
# Draw wrapping box for text
image = cv2.rectangle(img=image,
pt1=(start_box[0], start_box[1] - text_h - BOX_PADDING*2),
pt2=(start_box[0] + text_w + BOX_PADDING * 2, start_box[1]),
color=BOX_COLORS['checked'],
thickness=-1)
# Put class name on image
start_text = (start_box[0] + BOX_PADDING, start_box[1] - BOX_PADDING)
image = cv2.putText(img=image, text=text, org=start_text, fontFace=0, color=(255,255,255), fontScale=line_thickness/3, thickness=font_thickness)
return image, box_coordinates
def euclidean_distance(coord1, coord2):
return math.sqrt((coord1[0] - coord2[0])**2 + (coord1[1] - coord2[1])**2)
def nearest_coordinate(target_coord, coordinates):
min_distance = float('inf')
nearest_coord = None
for coord in coordinates:
distance = euclidean_distance(target_coord, coord)
if distance < min_distance:
min_distance = distance
nearest_coord = coord
return nearest_coord, euclidean_distance(target_coord, nearest_coord)
def checkbox_text_extract(image_filename, _):
checkbox_img, checkbox_coordinates = detect_checkbox(image_filename)
result = reader.readtext(image_filename, decoder = 'beamsearch',
text_threshold = 0.8, low_text = 0.2, link_threshold = 0.4,
canvas_size = 1500, mag_ratio = 1.5,
slope_ths = 0.1, ycenter_ths = 0.8, height_ths = 0.8,
width_ths = 1.0, y_ths = 0.8, x_ths = 1.0, add_margin = 0.1)
# Get the bottom right coordinates of the CHECKED checkbox
checkbox_bottom_right_coord = []
for each in checkbox_coordinates:
checkbox_bottom_right_coord.append((each[1][0], each[0][1]))
# Sort based on the coordinates
checkbox_bottom_right_coord = sorted(checkbox_bottom_right_coord, key=lambda point: point[1])
detected_text = {}
for index, each in enumerate(result):
x_coord = int(each[0][0][0])
y_coord = int(each[0][0][1])
detected_text[(x_coord, y_coord)] = each[1]
checked_text = ''
for each_checkbox_coord in checkbox_bottom_right_coord:
nearest, distance = nearest_coordinate(each_checkbox_coord, list(detected_text.keys()))
if distance <= 15:
checked_text += f"- {detected_text[nearest]}\n"
return "Results", checked_text
iface = gr.Interface(fn=checkbox_text_extract,
inputs=[
gr.Image(label="Upload image having checkboxes and text", type="filepath"),
gr.DownloadButton(label=f"Download sample.png",
value='images/sample.png',
visible=True)],
outputs=[gr.Label(value="Results"), gr.Markdown()])
iface.launch(allowed_paths=["images/"])