Spaces:
Running
Running
import os | |
import sys | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
from omegaconf import OmegaConf | |
import subprocess | |
from tqdm import tqdm | |
import requests | |
# Assuming spaces is a valid module | |
import spaces | |
def download_file(url, filename): | |
response = requests.get(url, stream=True) | |
total_size = int(response.headers.get('content-length', 0)) | |
block_size = 1024 | |
with open(filename, 'wb') as file, tqdm( | |
desc=filename, | |
total=total_size, | |
unit='iB', | |
unit_scale=True, | |
unit_divisor=1024, | |
) as progress_bar: | |
for data in response.iter_content(block_size): | |
size = file.write(data) | |
progress_bar.update(size) | |
def setup_environment(): | |
if not os.path.exists("CCSR"): | |
print("Cloning CCSR repository...") | |
subprocess.run(["git", "clone", "-b", "dev", "https://github.com/camenduru/CCSR.git"]) | |
os.chdir("CCSR") | |
sys.path.append(os.getcwd()) | |
os.makedirs("weights", exist_ok=True) | |
if not os.path.exists("weights/real-world_ccsr.ckpt"): | |
print("Downloading model checkpoint...") | |
download_file( | |
"https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt", | |
"weights/real-world_ccsr.ckpt" | |
) | |
else: | |
print("Model checkpoint already exists. Skipping download.") | |
setup_environment() | |
# Importing from the CCSR folder | |
from CCSR.ldm.xformers_state import disable_xformers | |
from CCSR.model.q_sampler import SpacedSampler | |
from CCSR.model.ccsr_stage1 import ControlLDM | |
from CCSR.utils.common import instantiate_from_config, load_state_dict | |
config = OmegaConf.load("configs/model/ccsr_stage2.yaml") | |
model = instantiate_from_config(config) | |
ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu") | |
load_state_dict(model, ckpt, strict=True) | |
model.freeze() | |
model.to("cuda") | |
# Decorate the inference function with @spaces.GPU | |
def process(image, steps, t_max, t_min, color_fix_type): | |
image = Image.open(image).convert("RGB") | |
image = image.resize((256, 256), Image.LANCZOS) | |
image = np.array(image) | |
sampler = SpacedSampler(model, var_type="fixed_small") | |
control = torch.tensor(np.stack([image]) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1) | |
control = einops.rearrange(control, "n h w c -> n c h w").contiguous() | |
model.control_scales = [1.0] * 13 | |
height, width = control.size(-2), control.size(-1) | |
shape = (1, 4, height // 8, width // 8) | |
x_T = torch.randn(shape, device=model.device, dtype=torch.float32) | |
samples = sampler.sample_ccsr( | |
steps=steps, t_max=t_max, t_min=t_min, shape=shape, cond_img=control, | |
positive_prompt="", negative_prompt="", x_T=x_T, | |
cfg_scale=1.0, color_fix_type=color_fix_type | |
) | |
x_samples = samples.clamp(0, 1) | |
x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8) | |
return Image.fromarray(x_samples[0]) | |
interface = gr.Interface( | |
fn=process, | |
inputs=[ | |
gr.Image(type="filepath"), | |
gr.Slider(minimum=1, maximum=100, step=1, value=45), | |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667), | |
gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333), | |
gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"), | |
], | |
outputs=gr.Image(type="pil"), | |
title="CCSR: Continuous Contrastive Super-Resolution", | |
) | |
interface.launch() |