Spaces:
Build error
Build error
owaiskha9654
commited on
Commit
•
ed5e87a
1
Parent(s):
e549ce4
Changes
Browse files- detect.py +195 -0
- export.py +205 -0
- hubconf.py +97 -0
- scripts/get_coco.sh +22 -0
- test.py +347 -0
- train.py +702 -0
detect.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
from numpy import random
|
9 |
+
|
10 |
+
from models.experimental import attempt_load
|
11 |
+
from utils.datasets import LoadStreams, LoadImages
|
12 |
+
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
13 |
+
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
14 |
+
from utils.plots import plot_one_box
|
15 |
+
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
|
16 |
+
|
17 |
+
|
18 |
+
def detect(save_img=False):
|
19 |
+
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
|
20 |
+
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
21 |
+
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
22 |
+
('rtsp://', 'rtmp://', 'http://', 'https://'))
|
23 |
+
|
24 |
+
# Directories
|
25 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
26 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
27 |
+
|
28 |
+
# Initialize
|
29 |
+
set_logging()
|
30 |
+
device = select_device(opt.device)
|
31 |
+
half = device.type != 'cpu' # half precision only supported on CUDA
|
32 |
+
|
33 |
+
# Load model
|
34 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
35 |
+
stride = int(model.stride.max()) # model stride
|
36 |
+
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
37 |
+
|
38 |
+
if trace:
|
39 |
+
model = TracedModel(model, device, opt.img_size)
|
40 |
+
|
41 |
+
if half:
|
42 |
+
model.half() # to FP16
|
43 |
+
|
44 |
+
# Second-stage classifier
|
45 |
+
classify = False
|
46 |
+
if classify:
|
47 |
+
modelc = load_classifier(name='resnet101', n=2) # initialize
|
48 |
+
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
49 |
+
|
50 |
+
# Set Dataloader
|
51 |
+
vid_path, vid_writer = None, None
|
52 |
+
if webcam:
|
53 |
+
view_img = check_imshow()
|
54 |
+
cudnn.benchmark = True # set True to speed up constant image size inference
|
55 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
56 |
+
else:
|
57 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
58 |
+
|
59 |
+
# Get names and colors
|
60 |
+
names = model.module.names if hasattr(model, 'module') else model.names
|
61 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
62 |
+
|
63 |
+
# Run inference
|
64 |
+
if device.type != 'cpu':
|
65 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
66 |
+
old_img_w = old_img_h = imgsz
|
67 |
+
old_img_b = 1
|
68 |
+
|
69 |
+
t0 = time.time()
|
70 |
+
for path, img, im0s, vid_cap in dataset:
|
71 |
+
img = torch.from_numpy(img).to(device)
|
72 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
73 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
74 |
+
if img.ndimension() == 3:
|
75 |
+
img = img.unsqueeze(0)
|
76 |
+
|
77 |
+
# Warmup
|
78 |
+
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
|
79 |
+
old_img_b = img.shape[0]
|
80 |
+
old_img_h = img.shape[2]
|
81 |
+
old_img_w = img.shape[3]
|
82 |
+
for i in range(3):
|
83 |
+
model(img, augment=opt.augment)[0]
|
84 |
+
|
85 |
+
# Inference
|
86 |
+
t1 = time_synchronized()
|
87 |
+
pred = model(img, augment=opt.augment)[0]
|
88 |
+
t2 = time_synchronized()
|
89 |
+
|
90 |
+
# Apply NMS
|
91 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
92 |
+
t3 = time_synchronized()
|
93 |
+
|
94 |
+
# Apply Classifier
|
95 |
+
if classify:
|
96 |
+
pred = apply_classifier(pred, modelc, img, im0s)
|
97 |
+
|
98 |
+
# Process detections
|
99 |
+
for i, det in enumerate(pred): # detections per image
|
100 |
+
if webcam: # batch_size >= 1
|
101 |
+
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
102 |
+
else:
|
103 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
104 |
+
|
105 |
+
p = Path(p) # to Path
|
106 |
+
save_path = str(save_dir / p.name) # img.jpg
|
107 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
108 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
109 |
+
if len(det):
|
110 |
+
# Rescale boxes from img_size to im0 size
|
111 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
112 |
+
|
113 |
+
# Print results
|
114 |
+
for c in det[:, -1].unique():
|
115 |
+
n = (det[:, -1] == c).sum() # detections per class
|
116 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
117 |
+
|
118 |
+
# Write results
|
119 |
+
for *xyxy, conf, cls in reversed(det):
|
120 |
+
if save_txt: # Write to file
|
121 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
122 |
+
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
123 |
+
with open(txt_path + '.txt', 'a') as f:
|
124 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
125 |
+
|
126 |
+
if save_img or view_img: # Add bbox to image
|
127 |
+
label = f'{names[int(cls)]} {conf:.2f}'
|
128 |
+
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
|
129 |
+
|
130 |
+
# Print time (inference + NMS)
|
131 |
+
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
|
132 |
+
|
133 |
+
# Stream results
|
134 |
+
if view_img:
|
135 |
+
cv2.imshow(str(p), im0)
|
136 |
+
cv2.waitKey(1) # 1 millisecond
|
137 |
+
|
138 |
+
# Save results (image with detections)
|
139 |
+
if save_img:
|
140 |
+
if dataset.mode == 'image':
|
141 |
+
cv2.imwrite(save_path, im0)
|
142 |
+
print(f" The image with the result is saved in: {save_path}")
|
143 |
+
else: # 'video' or 'stream'
|
144 |
+
if vid_path != save_path: # new video
|
145 |
+
vid_path = save_path
|
146 |
+
if isinstance(vid_writer, cv2.VideoWriter):
|
147 |
+
vid_writer.release() # release previous video writer
|
148 |
+
if vid_cap: # video
|
149 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
150 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
151 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
152 |
+
else: # stream
|
153 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
154 |
+
save_path += '.mp4'
|
155 |
+
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
156 |
+
vid_writer.write(im0)
|
157 |
+
|
158 |
+
if save_txt or save_img:
|
159 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
160 |
+
#print(f"Results saved to {save_dir}{s}")
|
161 |
+
|
162 |
+
print(f'Done. ({time.time() - t0:.3f}s)')
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == '__main__':
|
166 |
+
parser = argparse.ArgumentParser()
|
167 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
|
168 |
+
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
|
169 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
170 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
171 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
172 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
173 |
+
parser.add_argument('--view-img', action='store_true', help='display results')
|
174 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
175 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
176 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
177 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
178 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
179 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
180 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
181 |
+
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
182 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
183 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
184 |
+
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
|
185 |
+
opt = parser.parse_args()
|
186 |
+
print(opt)
|
187 |
+
#check_requirements(exclude=('pycocotools', 'thop'))
|
188 |
+
|
189 |
+
with torch.no_grad():
|
190 |
+
if opt.update: # update all models (to fix SourceChangeWarning)
|
191 |
+
for opt.weights in ['yolov7.pt']:
|
192 |
+
detect()
|
193 |
+
strip_optimizer(opt.weights)
|
194 |
+
else:
|
195 |
+
detect()
|
export.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sys
|
3 |
+
import time
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
11 |
+
|
12 |
+
import models
|
13 |
+
from models.experimental import attempt_load, End2End
|
14 |
+
from utils.activations import Hardswish, SiLU
|
15 |
+
from utils.general import set_logging, check_img_size
|
16 |
+
from utils.torch_utils import select_device
|
17 |
+
from utils.add_nms import RegisterNMS
|
18 |
+
|
19 |
+
if __name__ == '__main__':
|
20 |
+
parser = argparse.ArgumentParser()
|
21 |
+
parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
|
22 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
23 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
24 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
25 |
+
parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
|
26 |
+
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
27 |
+
parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
|
28 |
+
parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
|
29 |
+
parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
|
30 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
|
31 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
|
32 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
33 |
+
parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
|
34 |
+
parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
|
35 |
+
parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
|
36 |
+
parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
|
37 |
+
opt = parser.parse_args()
|
38 |
+
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
39 |
+
opt.dynamic = opt.dynamic and not opt.end2end
|
40 |
+
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
|
41 |
+
print(opt)
|
42 |
+
set_logging()
|
43 |
+
t = time.time()
|
44 |
+
|
45 |
+
# Load PyTorch model
|
46 |
+
device = select_device(opt.device)
|
47 |
+
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
48 |
+
labels = model.names
|
49 |
+
|
50 |
+
# Checks
|
51 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
52 |
+
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
53 |
+
|
54 |
+
# Input
|
55 |
+
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
56 |
+
|
57 |
+
# Update model
|
58 |
+
for k, m in model.named_modules():
|
59 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
60 |
+
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
61 |
+
if isinstance(m.act, nn.Hardswish):
|
62 |
+
m.act = Hardswish()
|
63 |
+
elif isinstance(m.act, nn.SiLU):
|
64 |
+
m.act = SiLU()
|
65 |
+
# elif isinstance(m, models.yolo.Detect):
|
66 |
+
# m.forward = m.forward_export # assign forward (optional)
|
67 |
+
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
68 |
+
y = model(img) # dry run
|
69 |
+
if opt.include_nms:
|
70 |
+
model.model[-1].include_nms = True
|
71 |
+
y = None
|
72 |
+
|
73 |
+
# TorchScript export
|
74 |
+
try:
|
75 |
+
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
76 |
+
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
77 |
+
ts = torch.jit.trace(model, img, strict=False)
|
78 |
+
ts.save(f)
|
79 |
+
print('TorchScript export success, saved as %s' % f)
|
80 |
+
except Exception as e:
|
81 |
+
print('TorchScript export failure: %s' % e)
|
82 |
+
|
83 |
+
# CoreML export
|
84 |
+
try:
|
85 |
+
import coremltools as ct
|
86 |
+
|
87 |
+
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
88 |
+
# convert model from torchscript and apply pixel scaling as per detect.py
|
89 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
90 |
+
bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
|
91 |
+
if bits < 32:
|
92 |
+
if sys.platform.lower() == 'darwin': # quantization only supported on macOS
|
93 |
+
with warnings.catch_warnings():
|
94 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
95 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
96 |
+
else:
|
97 |
+
print('quantization only supported on macOS, skipping...')
|
98 |
+
|
99 |
+
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
100 |
+
ct_model.save(f)
|
101 |
+
print('CoreML export success, saved as %s' % f)
|
102 |
+
except Exception as e:
|
103 |
+
print('CoreML export failure: %s' % e)
|
104 |
+
|
105 |
+
# TorchScript-Lite export
|
106 |
+
try:
|
107 |
+
print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
|
108 |
+
f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
|
109 |
+
tsl = torch.jit.trace(model, img, strict=False)
|
110 |
+
tsl = optimize_for_mobile(tsl)
|
111 |
+
tsl._save_for_lite_interpreter(f)
|
112 |
+
print('TorchScript-Lite export success, saved as %s' % f)
|
113 |
+
except Exception as e:
|
114 |
+
print('TorchScript-Lite export failure: %s' % e)
|
115 |
+
|
116 |
+
# ONNX export
|
117 |
+
try:
|
118 |
+
import onnx
|
119 |
+
|
120 |
+
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
121 |
+
f = opt.weights.replace('.pt', '.onnx') # filename
|
122 |
+
model.eval()
|
123 |
+
output_names = ['classes', 'boxes'] if y is None else ['output']
|
124 |
+
dynamic_axes = None
|
125 |
+
if opt.dynamic:
|
126 |
+
dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
127 |
+
'output': {0: 'batch', 2: 'y', 3: 'x'}}
|
128 |
+
if opt.dynamic_batch:
|
129 |
+
opt.batch_size = 'batch'
|
130 |
+
dynamic_axes = {
|
131 |
+
'images': {
|
132 |
+
0: 'batch',
|
133 |
+
}, }
|
134 |
+
if opt.end2end and opt.max_wh is None:
|
135 |
+
output_axes = {
|
136 |
+
'num_dets': {0: 'batch'},
|
137 |
+
'det_boxes': {0: 'batch'},
|
138 |
+
'det_scores': {0: 'batch'},
|
139 |
+
'det_classes': {0: 'batch'},
|
140 |
+
}
|
141 |
+
else:
|
142 |
+
output_axes = {
|
143 |
+
'output': {0: 'batch'},
|
144 |
+
}
|
145 |
+
dynamic_axes.update(output_axes)
|
146 |
+
if opt.grid:
|
147 |
+
if opt.end2end:
|
148 |
+
print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
|
149 |
+
model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device)
|
150 |
+
if opt.end2end and opt.max_wh is None:
|
151 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
152 |
+
shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
|
153 |
+
opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
|
154 |
+
else:
|
155 |
+
output_names = ['output']
|
156 |
+
else:
|
157 |
+
model.model[-1].concat = True
|
158 |
+
|
159 |
+
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
160 |
+
output_names=output_names,
|
161 |
+
dynamic_axes=dynamic_axes)
|
162 |
+
|
163 |
+
# Checks
|
164 |
+
onnx_model = onnx.load(f) # load onnx model
|
165 |
+
onnx.checker.check_model(onnx_model) # check onnx model
|
166 |
+
|
167 |
+
if opt.end2end and opt.max_wh is None:
|
168 |
+
for i in onnx_model.graph.output:
|
169 |
+
for j in i.type.tensor_type.shape.dim:
|
170 |
+
j.dim_param = str(shapes.pop(0))
|
171 |
+
|
172 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
173 |
+
|
174 |
+
# # Metadata
|
175 |
+
# d = {'stride': int(max(model.stride))}
|
176 |
+
# for k, v in d.items():
|
177 |
+
# meta = onnx_model.metadata_props.add()
|
178 |
+
# meta.key, meta.value = k, str(v)
|
179 |
+
# onnx.save(onnx_model, f)
|
180 |
+
|
181 |
+
if opt.simplify:
|
182 |
+
try:
|
183 |
+
import onnxsim
|
184 |
+
|
185 |
+
print('\nStarting to simplify ONNX...')
|
186 |
+
onnx_model, check = onnxsim.simplify(onnx_model)
|
187 |
+
assert check, 'assert check failed'
|
188 |
+
except Exception as e:
|
189 |
+
print(f'Simplifier failure: {e}')
|
190 |
+
|
191 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
192 |
+
onnx.save(onnx_model,f)
|
193 |
+
print('ONNX export success, saved as %s' % f)
|
194 |
+
|
195 |
+
if opt.include_nms:
|
196 |
+
print('Registering NMS plugin for ONNX...')
|
197 |
+
mo = RegisterNMS(f)
|
198 |
+
mo.register_nms()
|
199 |
+
mo.save(f)
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
print('ONNX export failure: %s' % e)
|
203 |
+
|
204 |
+
# Finish
|
205 |
+
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
hubconf.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""PyTorch Hub models
|
2 |
+
|
3 |
+
Usage:
|
4 |
+
import torch
|
5 |
+
model = torch.hub.load('repo', 'model')
|
6 |
+
"""
|
7 |
+
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from models.yolo import Model
|
13 |
+
from utils.general import check_requirements, set_logging
|
14 |
+
from utils.google_utils import attempt_download
|
15 |
+
from utils.torch_utils import select_device
|
16 |
+
|
17 |
+
dependencies = ['torch', 'yaml']
|
18 |
+
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
19 |
+
set_logging()
|
20 |
+
|
21 |
+
|
22 |
+
def create(name, pretrained, channels, classes, autoshape):
|
23 |
+
"""Creates a specified model
|
24 |
+
|
25 |
+
Arguments:
|
26 |
+
name (str): name of model, i.e. 'yolov7'
|
27 |
+
pretrained (bool): load pretrained weights into the model
|
28 |
+
channels (int): number of input channels
|
29 |
+
classes (int): number of model classes
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
pytorch model
|
33 |
+
"""
|
34 |
+
try:
|
35 |
+
cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
|
36 |
+
model = Model(cfg, channels, classes)
|
37 |
+
if pretrained:
|
38 |
+
fname = f'{name}.pt' # checkpoint filename
|
39 |
+
attempt_download(fname) # download if not found locally
|
40 |
+
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
41 |
+
msd = model.state_dict() # model state_dict
|
42 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
43 |
+
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
44 |
+
model.load_state_dict(csd, strict=False) # load
|
45 |
+
if len(ckpt['model'].names) == classes:
|
46 |
+
model.names = ckpt['model'].names # set class names attribute
|
47 |
+
if autoshape:
|
48 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
49 |
+
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
50 |
+
return model.to(device)
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
s = 'Cache maybe be out of date, try force_reload=True.'
|
54 |
+
raise Exception(s) from e
|
55 |
+
|
56 |
+
|
57 |
+
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
58 |
+
"""custom mode
|
59 |
+
|
60 |
+
Arguments (3 options):
|
61 |
+
path_or_model (str): 'path/to/model.pt'
|
62 |
+
path_or_model (dict): torch.load('path/to/model.pt')
|
63 |
+
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
pytorch model
|
67 |
+
"""
|
68 |
+
model = torch.load(path_or_model, map_location=torch.device('cpu')) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
69 |
+
if isinstance(model, dict):
|
70 |
+
model = model['ema' if model.get('ema') else 'model'] # load model
|
71 |
+
|
72 |
+
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
73 |
+
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
74 |
+
hub_model.names = model.names # class names
|
75 |
+
if autoshape:
|
76 |
+
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
77 |
+
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
78 |
+
return hub_model.to(device)
|
79 |
+
|
80 |
+
|
81 |
+
def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
|
82 |
+
return create('yolov7', pretrained, channels, classes, autoshape)
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
model = custom(path_or_model='yolov7.pt') # custom example
|
87 |
+
# model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
88 |
+
|
89 |
+
# Verify inference
|
90 |
+
import numpy as np
|
91 |
+
from PIL import Image
|
92 |
+
|
93 |
+
imgs = [np.zeros((640, 480, 3))]
|
94 |
+
|
95 |
+
results = model(imgs) # batched inference
|
96 |
+
results.print()
|
97 |
+
results.save()
|
scripts/get_coco.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# COCO 2017 dataset http://cocodataset.org
|
3 |
+
# Download command: bash ./scripts/get_coco.sh
|
4 |
+
|
5 |
+
# Download/unzip labels
|
6 |
+
d='./' # unzip directory
|
7 |
+
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
|
8 |
+
f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
|
9 |
+
echo 'Downloading' $url$f ' ...'
|
10 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
11 |
+
|
12 |
+
# Download/unzip images
|
13 |
+
d='./coco/images' # unzip directory
|
14 |
+
url=http://images.cocodataset.org/zips/
|
15 |
+
f1='train2017.zip' # 19G, 118k images
|
16 |
+
f2='val2017.zip' # 1G, 5k images
|
17 |
+
f3='test2017.zip' # 7G, 41k images (optional)
|
18 |
+
for f in $f1 $f2 $f3; do
|
19 |
+
echo 'Downloading' $url$f '...'
|
20 |
+
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
|
21 |
+
done
|
22 |
+
wait # finish background tasks
|
test.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import yaml
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from models.experimental import attempt_load
|
13 |
+
from utils.datasets import create_dataloader
|
14 |
+
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
15 |
+
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
|
16 |
+
from utils.metrics import ap_per_class, ConfusionMatrix
|
17 |
+
from utils.plots import plot_images, output_to_target, plot_study_txt
|
18 |
+
from utils.torch_utils import select_device, time_synchronized, TracedModel
|
19 |
+
|
20 |
+
|
21 |
+
def test(data,
|
22 |
+
weights=None,
|
23 |
+
batch_size=32,
|
24 |
+
imgsz=640,
|
25 |
+
conf_thres=0.001,
|
26 |
+
iou_thres=0.6, # for NMS
|
27 |
+
save_json=False,
|
28 |
+
single_cls=False,
|
29 |
+
augment=False,
|
30 |
+
verbose=False,
|
31 |
+
model=None,
|
32 |
+
dataloader=None,
|
33 |
+
save_dir=Path(''), # for saving images
|
34 |
+
save_txt=False, # for auto-labelling
|
35 |
+
save_hybrid=False, # for hybrid auto-labelling
|
36 |
+
save_conf=False, # save auto-label confidences
|
37 |
+
plots=True,
|
38 |
+
wandb_logger=None,
|
39 |
+
compute_loss=None,
|
40 |
+
half_precision=True,
|
41 |
+
trace=False,
|
42 |
+
is_coco=False):
|
43 |
+
# Initialize/load model and set device
|
44 |
+
training = model is not None
|
45 |
+
if training: # called by train.py
|
46 |
+
device = next(model.parameters()).device # get model device
|
47 |
+
|
48 |
+
else: # called directly
|
49 |
+
set_logging()
|
50 |
+
device = select_device(opt.device, batch_size=batch_size)
|
51 |
+
|
52 |
+
# Directories
|
53 |
+
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
54 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
55 |
+
|
56 |
+
# Load model
|
57 |
+
model = attempt_load(weights, map_location=device) # load FP32 model
|
58 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
59 |
+
imgsz = check_img_size(imgsz, s=gs) # check img_size
|
60 |
+
|
61 |
+
if trace:
|
62 |
+
model = TracedModel(model, device, opt.img_size)
|
63 |
+
|
64 |
+
# Half
|
65 |
+
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
|
66 |
+
if half:
|
67 |
+
model.half()
|
68 |
+
|
69 |
+
# Configure
|
70 |
+
model.eval()
|
71 |
+
if isinstance(data, str):
|
72 |
+
is_coco = data.endswith('coco.yaml')
|
73 |
+
with open(data) as f:
|
74 |
+
data = yaml.load(f, Loader=yaml.SafeLoader)
|
75 |
+
check_dataset(data) # check
|
76 |
+
nc = 1 if single_cls else int(data['nc']) # number of classes
|
77 |
+
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
78 |
+
niou = iouv.numel()
|
79 |
+
|
80 |
+
# Logging
|
81 |
+
log_imgs = 0
|
82 |
+
if wandb_logger and wandb_logger.wandb:
|
83 |
+
log_imgs = min(wandb_logger.log_imgs, 100)
|
84 |
+
# Dataloader
|
85 |
+
if not training:
|
86 |
+
if device.type != 'cpu':
|
87 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
88 |
+
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
89 |
+
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
|
90 |
+
prefix=colorstr(f'{task}: '))[0]
|
91 |
+
|
92 |
+
seen = 0
|
93 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
94 |
+
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
95 |
+
coco91class = coco80_to_coco91_class()
|
96 |
+
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
97 |
+
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
98 |
+
loss = torch.zeros(3, device=device)
|
99 |
+
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
|
100 |
+
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
101 |
+
img = img.to(device, non_blocking=True)
|
102 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
103 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
104 |
+
targets = targets.to(device)
|
105 |
+
nb, _, height, width = img.shape # batch size, channels, height, width
|
106 |
+
|
107 |
+
with torch.no_grad():
|
108 |
+
# Run model
|
109 |
+
t = time_synchronized()
|
110 |
+
out, train_out = model(img, augment=augment) # inference and training outputs
|
111 |
+
t0 += time_synchronized() - t
|
112 |
+
|
113 |
+
# Compute loss
|
114 |
+
if compute_loss:
|
115 |
+
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
|
116 |
+
|
117 |
+
# Run NMS
|
118 |
+
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
119 |
+
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
120 |
+
t = time_synchronized()
|
121 |
+
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
|
122 |
+
t1 += time_synchronized() - t
|
123 |
+
|
124 |
+
# Statistics per image
|
125 |
+
for si, pred in enumerate(out):
|
126 |
+
labels = targets[targets[:, 0] == si, 1:]
|
127 |
+
nl = len(labels)
|
128 |
+
tcls = labels[:, 0].tolist() if nl else [] # target class
|
129 |
+
path = Path(paths[si])
|
130 |
+
seen += 1
|
131 |
+
|
132 |
+
if len(pred) == 0:
|
133 |
+
if nl:
|
134 |
+
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
135 |
+
continue
|
136 |
+
|
137 |
+
# Predictions
|
138 |
+
predn = pred.clone()
|
139 |
+
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
|
140 |
+
|
141 |
+
# Append to text file
|
142 |
+
if save_txt:
|
143 |
+
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
144 |
+
for *xyxy, conf, cls in predn.tolist():
|
145 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
146 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
147 |
+
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
|
148 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
149 |
+
|
150 |
+
# W&B logging - Media Panel Plots
|
151 |
+
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
|
152 |
+
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
|
153 |
+
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
154 |
+
"class_id": int(cls),
|
155 |
+
"box_caption": "%s %.3f" % (names[cls], conf),
|
156 |
+
"scores": {"class_score": conf},
|
157 |
+
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
158 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
159 |
+
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
|
160 |
+
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
|
161 |
+
|
162 |
+
# Append to pycocotools JSON dictionary
|
163 |
+
if save_json:
|
164 |
+
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
165 |
+
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
166 |
+
box = xyxy2xywh(predn[:, :4]) # xywh
|
167 |
+
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
168 |
+
for p, b in zip(pred.tolist(), box.tolist()):
|
169 |
+
jdict.append({'image_id': image_id,
|
170 |
+
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
171 |
+
'bbox': [round(x, 3) for x in b],
|
172 |
+
'score': round(p[4], 5)})
|
173 |
+
|
174 |
+
# Assign all predictions as incorrect
|
175 |
+
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
176 |
+
if nl:
|
177 |
+
detected = [] # target indices
|
178 |
+
tcls_tensor = labels[:, 0]
|
179 |
+
|
180 |
+
# target boxes
|
181 |
+
tbox = xywh2xyxy(labels[:, 1:5])
|
182 |
+
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
|
183 |
+
if plots:
|
184 |
+
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
|
185 |
+
|
186 |
+
# Per target class
|
187 |
+
for cls in torch.unique(tcls_tensor):
|
188 |
+
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
189 |
+
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
190 |
+
|
191 |
+
# Search for detections
|
192 |
+
if pi.shape[0]:
|
193 |
+
# Prediction to target ious
|
194 |
+
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
|
195 |
+
|
196 |
+
# Append detections
|
197 |
+
detected_set = set()
|
198 |
+
for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
199 |
+
d = ti[i[j]] # detected target
|
200 |
+
if d.item() not in detected_set:
|
201 |
+
detected_set.add(d.item())
|
202 |
+
detected.append(d)
|
203 |
+
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
204 |
+
if len(detected) == nl: # all targets already located in image
|
205 |
+
break
|
206 |
+
|
207 |
+
# Append statistics (correct, conf, pcls, tcls)
|
208 |
+
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
209 |
+
|
210 |
+
# Plot images
|
211 |
+
if plots and batch_i < 3:
|
212 |
+
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
|
213 |
+
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
|
214 |
+
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
|
215 |
+
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
|
216 |
+
|
217 |
+
# Compute statistics
|
218 |
+
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
219 |
+
if len(stats) and stats[0].any():
|
220 |
+
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
221 |
+
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
222 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
223 |
+
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
224 |
+
else:
|
225 |
+
nt = torch.zeros(1)
|
226 |
+
|
227 |
+
# Print results
|
228 |
+
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
|
229 |
+
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
230 |
+
|
231 |
+
# Print results per class
|
232 |
+
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
233 |
+
for i, c in enumerate(ap_class):
|
234 |
+
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
235 |
+
|
236 |
+
# Print speeds
|
237 |
+
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
238 |
+
if not training:
|
239 |
+
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
240 |
+
|
241 |
+
# Plots
|
242 |
+
if plots:
|
243 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
244 |
+
if wandb_logger and wandb_logger.wandb:
|
245 |
+
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
|
246 |
+
wandb_logger.log({"Validation": val_batches})
|
247 |
+
if wandb_images:
|
248 |
+
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
|
249 |
+
|
250 |
+
# Save JSON
|
251 |
+
if save_json and len(jdict):
|
252 |
+
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
253 |
+
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
254 |
+
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
255 |
+
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
256 |
+
with open(pred_json, 'w') as f:
|
257 |
+
json.dump(jdict, f)
|
258 |
+
|
259 |
+
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
260 |
+
from pycocotools.coco import COCO
|
261 |
+
from pycocotools.cocoeval import COCOeval
|
262 |
+
|
263 |
+
anno = COCO(anno_json) # init annotations api
|
264 |
+
pred = anno.loadRes(pred_json) # init predictions api
|
265 |
+
eval = COCOeval(anno, pred, 'bbox')
|
266 |
+
if is_coco:
|
267 |
+
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
|
268 |
+
eval.evaluate()
|
269 |
+
eval.accumulate()
|
270 |
+
eval.summarize()
|
271 |
+
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
272 |
+
except Exception as e:
|
273 |
+
print(f'pycocotools unable to run: {e}')
|
274 |
+
|
275 |
+
# Return results
|
276 |
+
model.float() # for training
|
277 |
+
if not training:
|
278 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
279 |
+
print(f"Results saved to {save_dir}{s}")
|
280 |
+
maps = np.zeros(nc) + map
|
281 |
+
for i, c in enumerate(ap_class):
|
282 |
+
maps[c] = ap[i]
|
283 |
+
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
284 |
+
|
285 |
+
|
286 |
+
if __name__ == '__main__':
|
287 |
+
parser = argparse.ArgumentParser(prog='test.py')
|
288 |
+
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
|
289 |
+
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
|
290 |
+
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
291 |
+
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
292 |
+
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
293 |
+
parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
|
294 |
+
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
295 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
296 |
+
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
297 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
298 |
+
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
299 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
300 |
+
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
301 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
302 |
+
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
303 |
+
parser.add_argument('--project', default='runs/test', help='save to project/name')
|
304 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
305 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
306 |
+
parser.add_argument('--trace', action='store_true', help='trace model')
|
307 |
+
opt = parser.parse_args()
|
308 |
+
opt.save_json |= opt.data.endswith('coco.yaml')
|
309 |
+
opt.data = check_file(opt.data) # check file
|
310 |
+
print(opt)
|
311 |
+
#check_requirements()
|
312 |
+
|
313 |
+
if opt.task in ('train', 'val', 'test'): # run normally
|
314 |
+
test(opt.data,
|
315 |
+
opt.weights,
|
316 |
+
opt.batch_size,
|
317 |
+
opt.img_size,
|
318 |
+
opt.conf_thres,
|
319 |
+
opt.iou_thres,
|
320 |
+
opt.save_json,
|
321 |
+
opt.single_cls,
|
322 |
+
opt.augment,
|
323 |
+
opt.verbose,
|
324 |
+
save_txt=opt.save_txt | opt.save_hybrid,
|
325 |
+
save_hybrid=opt.save_hybrid,
|
326 |
+
save_conf=opt.save_conf,
|
327 |
+
trace=opt.trace,
|
328 |
+
)
|
329 |
+
|
330 |
+
elif opt.task == 'speed': # speed benchmarks
|
331 |
+
for w in opt.weights:
|
332 |
+
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
|
333 |
+
|
334 |
+
elif opt.task == 'study': # run over a range of settings and save/plot
|
335 |
+
# python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
|
336 |
+
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
|
337 |
+
for w in opt.weights:
|
338 |
+
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
|
339 |
+
y = [] # y axis
|
340 |
+
for i in x: # img-size
|
341 |
+
print(f'\nRunning {f} point {i}...')
|
342 |
+
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
|
343 |
+
plots=False)
|
344 |
+
y.append(r + t) # results and times
|
345 |
+
np.savetxt(f, y, fmt='%10.4g') # save
|
346 |
+
os.system('zip -r study.zip study_*.txt')
|
347 |
+
plot_study_txt(x=x) # plot
|
train.py
ADDED
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import time
|
7 |
+
from copy import deepcopy
|
8 |
+
from pathlib import Path
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch.distributed as dist
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.optim as optim
|
16 |
+
import torch.optim.lr_scheduler as lr_scheduler
|
17 |
+
import torch.utils.data
|
18 |
+
import yaml
|
19 |
+
from torch.cuda import amp
|
20 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
21 |
+
from torch.utils.tensorboard import SummaryWriter
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
import test # import test.py to get mAP after each epoch
|
25 |
+
from models.experimental import attempt_load
|
26 |
+
from models.yolo import Model
|
27 |
+
from utils.autoanchor import check_anchors
|
28 |
+
from utils.datasets import create_dataloader
|
29 |
+
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
30 |
+
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
31 |
+
check_requirements, print_mutation, set_logging, one_cycle, colorstr
|
32 |
+
from utils.google_utils import attempt_download
|
33 |
+
from utils.loss import ComputeLoss, ComputeLossOTA
|
34 |
+
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
35 |
+
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
|
36 |
+
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
def train(hyp, opt, device, tb_writer=None):
|
42 |
+
logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
|
43 |
+
save_dir, epochs, batch_size, total_batch_size, weights, rank, freeze = \
|
44 |
+
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, opt.freeze
|
45 |
+
|
46 |
+
# Directories
|
47 |
+
wdir = save_dir / 'weights'
|
48 |
+
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
49 |
+
last = wdir / 'last.pt'
|
50 |
+
best = wdir / 'best.pt'
|
51 |
+
results_file = save_dir / 'results.txt'
|
52 |
+
|
53 |
+
# Save run settings
|
54 |
+
with open(save_dir / 'hyp.yaml', 'w') as f:
|
55 |
+
yaml.dump(hyp, f, sort_keys=False)
|
56 |
+
with open(save_dir / 'opt.yaml', 'w') as f:
|
57 |
+
yaml.dump(vars(opt), f, sort_keys=False)
|
58 |
+
|
59 |
+
# Configure
|
60 |
+
plots = not opt.evolve # create plots
|
61 |
+
cuda = device.type != 'cpu'
|
62 |
+
init_seeds(2 + rank)
|
63 |
+
with open(opt.data) as f:
|
64 |
+
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
65 |
+
is_coco = opt.data.endswith('coco.yaml')
|
66 |
+
|
67 |
+
# Logging- Doing this before checking the dataset. Might update data_dict
|
68 |
+
loggers = {'wandb': None} # loggers dict
|
69 |
+
if rank in [-1, 0]:
|
70 |
+
opt.hyp = hyp # add hyperparameters
|
71 |
+
run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
72 |
+
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
|
73 |
+
loggers['wandb'] = wandb_logger.wandb
|
74 |
+
data_dict = wandb_logger.data_dict
|
75 |
+
if wandb_logger.wandb:
|
76 |
+
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
|
77 |
+
|
78 |
+
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
|
79 |
+
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
80 |
+
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
81 |
+
|
82 |
+
# Model
|
83 |
+
pretrained = weights.endswith('.pt')
|
84 |
+
if pretrained:
|
85 |
+
with torch_distributed_zero_first(rank):
|
86 |
+
attempt_download(weights) # download if not found locally
|
87 |
+
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
88 |
+
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
89 |
+
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
|
90 |
+
state_dict = ckpt['model'].float().state_dict() # to FP32
|
91 |
+
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
92 |
+
model.load_state_dict(state_dict, strict=False) # load
|
93 |
+
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
94 |
+
else:
|
95 |
+
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
96 |
+
with torch_distributed_zero_first(rank):
|
97 |
+
check_dataset(data_dict) # check
|
98 |
+
train_path = data_dict['train']
|
99 |
+
test_path = data_dict['val']
|
100 |
+
|
101 |
+
# Freeze
|
102 |
+
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # parameter names to freeze (full or partial)
|
103 |
+
for k, v in model.named_parameters():
|
104 |
+
v.requires_grad = True # train all layers
|
105 |
+
if any(x in k for x in freeze):
|
106 |
+
print('freezing %s' % k)
|
107 |
+
v.requires_grad = False
|
108 |
+
|
109 |
+
# Optimizer
|
110 |
+
nbs = 64 # nominal batch size
|
111 |
+
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
112 |
+
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
113 |
+
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
114 |
+
|
115 |
+
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
116 |
+
for k, v in model.named_modules():
|
117 |
+
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
118 |
+
pg2.append(v.bias) # biases
|
119 |
+
if isinstance(v, nn.BatchNorm2d):
|
120 |
+
pg0.append(v.weight) # no decay
|
121 |
+
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
122 |
+
pg1.append(v.weight) # apply decay
|
123 |
+
if hasattr(v, 'im'):
|
124 |
+
if hasattr(v.im, 'implicit'):
|
125 |
+
pg0.append(v.im.implicit)
|
126 |
+
else:
|
127 |
+
for iv in v.im:
|
128 |
+
pg0.append(iv.implicit)
|
129 |
+
if hasattr(v, 'imc'):
|
130 |
+
if hasattr(v.imc, 'implicit'):
|
131 |
+
pg0.append(v.imc.implicit)
|
132 |
+
else:
|
133 |
+
for iv in v.imc:
|
134 |
+
pg0.append(iv.implicit)
|
135 |
+
if hasattr(v, 'imb'):
|
136 |
+
if hasattr(v.imb, 'implicit'):
|
137 |
+
pg0.append(v.imb.implicit)
|
138 |
+
else:
|
139 |
+
for iv in v.imb:
|
140 |
+
pg0.append(iv.implicit)
|
141 |
+
if hasattr(v, 'imo'):
|
142 |
+
if hasattr(v.imo, 'implicit'):
|
143 |
+
pg0.append(v.imo.implicit)
|
144 |
+
else:
|
145 |
+
for iv in v.imo:
|
146 |
+
pg0.append(iv.implicit)
|
147 |
+
if hasattr(v, 'ia'):
|
148 |
+
if hasattr(v.ia, 'implicit'):
|
149 |
+
pg0.append(v.ia.implicit)
|
150 |
+
else:
|
151 |
+
for iv in v.ia:
|
152 |
+
pg0.append(iv.implicit)
|
153 |
+
if hasattr(v, 'attn'):
|
154 |
+
if hasattr(v.attn, 'logit_scale'):
|
155 |
+
pg0.append(v.attn.logit_scale)
|
156 |
+
if hasattr(v.attn, 'q_bias'):
|
157 |
+
pg0.append(v.attn.q_bias)
|
158 |
+
if hasattr(v.attn, 'v_bias'):
|
159 |
+
pg0.append(v.attn.v_bias)
|
160 |
+
if hasattr(v.attn, 'relative_position_bias_table'):
|
161 |
+
pg0.append(v.attn.relative_position_bias_table)
|
162 |
+
if hasattr(v, 'rbr_dense'):
|
163 |
+
if hasattr(v.rbr_dense, 'weight_rbr_origin'):
|
164 |
+
pg0.append(v.rbr_dense.weight_rbr_origin)
|
165 |
+
if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
|
166 |
+
pg0.append(v.rbr_dense.weight_rbr_avg_conv)
|
167 |
+
if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
|
168 |
+
pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
|
169 |
+
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
|
170 |
+
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
|
171 |
+
if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
|
172 |
+
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
|
173 |
+
if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
|
174 |
+
pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
|
175 |
+
if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
|
176 |
+
pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
|
177 |
+
if hasattr(v.rbr_dense, 'vector'):
|
178 |
+
pg0.append(v.rbr_dense.vector)
|
179 |
+
|
180 |
+
if opt.adam:
|
181 |
+
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
182 |
+
else:
|
183 |
+
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
184 |
+
|
185 |
+
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
186 |
+
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
187 |
+
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
188 |
+
del pg0, pg1, pg2
|
189 |
+
|
190 |
+
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
191 |
+
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
192 |
+
if opt.linear_lr:
|
193 |
+
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
194 |
+
else:
|
195 |
+
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
196 |
+
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
197 |
+
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
198 |
+
|
199 |
+
# EMA
|
200 |
+
ema = ModelEMA(model) if rank in [-1, 0] else None
|
201 |
+
|
202 |
+
# Resume
|
203 |
+
start_epoch, best_fitness = 0, 0.0
|
204 |
+
if pretrained:
|
205 |
+
# Optimizer
|
206 |
+
if ckpt['optimizer'] is not None:
|
207 |
+
optimizer.load_state_dict(ckpt['optimizer'])
|
208 |
+
best_fitness = ckpt['best_fitness']
|
209 |
+
|
210 |
+
# EMA
|
211 |
+
if ema and ckpt.get('ema'):
|
212 |
+
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
213 |
+
ema.updates = ckpt['updates']
|
214 |
+
|
215 |
+
# Results
|
216 |
+
if ckpt.get('training_results') is not None:
|
217 |
+
results_file.write_text(ckpt['training_results']) # write results.txt
|
218 |
+
|
219 |
+
# Epochs
|
220 |
+
start_epoch = ckpt['epoch'] + 1
|
221 |
+
if opt.resume:
|
222 |
+
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
223 |
+
if epochs < start_epoch:
|
224 |
+
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
225 |
+
(weights, ckpt['epoch'], epochs))
|
226 |
+
epochs += ckpt['epoch'] # finetune additional epochs
|
227 |
+
|
228 |
+
del ckpt, state_dict
|
229 |
+
|
230 |
+
# Image sizes
|
231 |
+
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
232 |
+
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
|
233 |
+
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
234 |
+
|
235 |
+
# DP mode
|
236 |
+
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
237 |
+
model = torch.nn.DataParallel(model)
|
238 |
+
|
239 |
+
# SyncBatchNorm
|
240 |
+
if opt.sync_bn and cuda and rank != -1:
|
241 |
+
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
242 |
+
logger.info('Using SyncBatchNorm()')
|
243 |
+
|
244 |
+
# Trainloader
|
245 |
+
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
246 |
+
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
247 |
+
world_size=opt.world_size, workers=opt.workers,
|
248 |
+
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
|
249 |
+
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
250 |
+
nb = len(dataloader) # number of batches
|
251 |
+
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
252 |
+
|
253 |
+
# Process 0
|
254 |
+
if rank in [-1, 0]:
|
255 |
+
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
|
256 |
+
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
|
257 |
+
world_size=opt.world_size, workers=opt.workers,
|
258 |
+
pad=0.5, prefix=colorstr('val: '))[0]
|
259 |
+
|
260 |
+
if not opt.resume:
|
261 |
+
labels = np.concatenate(dataset.labels, 0)
|
262 |
+
c = torch.tensor(labels[:, 0]) # classes
|
263 |
+
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
264 |
+
# model._initialize_biases(cf.to(device))
|
265 |
+
if plots:
|
266 |
+
#plot_labels(labels, names, save_dir, loggers)
|
267 |
+
if tb_writer:
|
268 |
+
tb_writer.add_histogram('classes', c, 0)
|
269 |
+
|
270 |
+
# Anchors
|
271 |
+
if not opt.noautoanchor:
|
272 |
+
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
273 |
+
model.half().float() # pre-reduce anchor precision
|
274 |
+
|
275 |
+
# DDP mode
|
276 |
+
if cuda and rank != -1:
|
277 |
+
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
|
278 |
+
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
|
279 |
+
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
|
280 |
+
|
281 |
+
# Model parameters
|
282 |
+
hyp['box'] *= 3. / nl # scale to layers
|
283 |
+
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
|
284 |
+
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
|
285 |
+
hyp['label_smoothing'] = opt.label_smoothing
|
286 |
+
model.nc = nc # attach number of classes to model
|
287 |
+
model.hyp = hyp # attach hyperparameters to model
|
288 |
+
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
289 |
+
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
290 |
+
model.names = names
|
291 |
+
|
292 |
+
# Start training
|
293 |
+
t0 = time.time()
|
294 |
+
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
295 |
+
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
296 |
+
maps = np.zeros(nc) # mAP per class
|
297 |
+
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
298 |
+
scheduler.last_epoch = start_epoch - 1 # do not move
|
299 |
+
scaler = amp.GradScaler(enabled=cuda)
|
300 |
+
compute_loss_ota = ComputeLossOTA(model) # init loss class
|
301 |
+
compute_loss = ComputeLoss(model) # init loss class
|
302 |
+
logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
|
303 |
+
f'Using {dataloader.num_workers} dataloader workers\n'
|
304 |
+
f'Logging results to {save_dir}\n'
|
305 |
+
f'Starting training for {epochs} epochs...')
|
306 |
+
torch.save(model, wdir / 'init.pt')
|
307 |
+
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
308 |
+
model.train()
|
309 |
+
|
310 |
+
# Update image weights (optional)
|
311 |
+
if opt.image_weights:
|
312 |
+
# Generate indices
|
313 |
+
if rank in [-1, 0]:
|
314 |
+
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
315 |
+
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
316 |
+
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
317 |
+
# Broadcast if DDP
|
318 |
+
if rank != -1:
|
319 |
+
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
|
320 |
+
dist.broadcast(indices, 0)
|
321 |
+
if rank != 0:
|
322 |
+
dataset.indices = indices.cpu().numpy()
|
323 |
+
|
324 |
+
# Update mosaic border
|
325 |
+
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
326 |
+
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
327 |
+
|
328 |
+
mloss = torch.zeros(4, device=device) # mean losses
|
329 |
+
if rank != -1:
|
330 |
+
dataloader.sampler.set_epoch(epoch)
|
331 |
+
pbar = enumerate(dataloader)
|
332 |
+
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
|
333 |
+
if rank in [-1, 0]:
|
334 |
+
pbar = tqdm(pbar, total=nb) # progress bar
|
335 |
+
optimizer.zero_grad()
|
336 |
+
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
337 |
+
ni = i + nb * epoch # number integrated batches (since train start)
|
338 |
+
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
339 |
+
|
340 |
+
# Warmup
|
341 |
+
if ni <= nw:
|
342 |
+
xi = [0, nw] # x interp
|
343 |
+
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
344 |
+
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
345 |
+
for j, x in enumerate(optimizer.param_groups):
|
346 |
+
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
347 |
+
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
348 |
+
if 'momentum' in x:
|
349 |
+
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
350 |
+
|
351 |
+
# Multi-scale
|
352 |
+
if opt.multi_scale:
|
353 |
+
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
354 |
+
sf = sz / max(imgs.shape[2:]) # scale factor
|
355 |
+
if sf != 1:
|
356 |
+
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
357 |
+
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
358 |
+
|
359 |
+
# Forward
|
360 |
+
with amp.autocast(enabled=cuda):
|
361 |
+
pred = model(imgs) # forward
|
362 |
+
if hyp['loss_ota'] == 1:
|
363 |
+
loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
|
364 |
+
else:
|
365 |
+
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
366 |
+
if rank != -1:
|
367 |
+
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
368 |
+
if opt.quad:
|
369 |
+
loss *= 4.
|
370 |
+
|
371 |
+
# Backward
|
372 |
+
scaler.scale(loss).backward()
|
373 |
+
|
374 |
+
# Optimize
|
375 |
+
if ni % accumulate == 0:
|
376 |
+
scaler.step(optimizer) # optimizer.step
|
377 |
+
scaler.update()
|
378 |
+
optimizer.zero_grad()
|
379 |
+
if ema:
|
380 |
+
ema.update(model)
|
381 |
+
|
382 |
+
# Print
|
383 |
+
if rank in [-1, 0]:
|
384 |
+
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
385 |
+
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
386 |
+
s = ('%10s' * 2 + '%10.4g' * 6) % (
|
387 |
+
'%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
388 |
+
pbar.set_description(s)
|
389 |
+
|
390 |
+
# Plot
|
391 |
+
if plots and ni < 10:
|
392 |
+
f = save_dir / f'train_batch{ni}.jpg' # filename
|
393 |
+
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
394 |
+
# if tb_writer:
|
395 |
+
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
396 |
+
# tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
|
397 |
+
elif plots and ni == 10 and wandb_logger.wandb:
|
398 |
+
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
|
399 |
+
save_dir.glob('train*.jpg') if x.exists()]})
|
400 |
+
|
401 |
+
# end batch ------------------------------------------------------------------------------------------------
|
402 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
403 |
+
|
404 |
+
# Scheduler
|
405 |
+
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
406 |
+
scheduler.step()
|
407 |
+
|
408 |
+
# DDP process 0 or single-GPU
|
409 |
+
if rank in [-1, 0]:
|
410 |
+
# mAP
|
411 |
+
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
|
412 |
+
final_epoch = epoch + 1 == epochs
|
413 |
+
if not opt.notest or final_epoch: # Calculate mAP
|
414 |
+
wandb_logger.current_epoch = epoch + 1
|
415 |
+
results, maps, times = test.test(data_dict,
|
416 |
+
batch_size=batch_size * 2,
|
417 |
+
imgsz=imgsz_test,
|
418 |
+
model=ema.ema,
|
419 |
+
single_cls=opt.single_cls,
|
420 |
+
dataloader=testloader,
|
421 |
+
save_dir=save_dir,
|
422 |
+
verbose=nc < 50 and final_epoch,
|
423 |
+
plots=plots and final_epoch,
|
424 |
+
wandb_logger=wandb_logger,
|
425 |
+
compute_loss=compute_loss,
|
426 |
+
is_coco=is_coco)
|
427 |
+
|
428 |
+
# Write
|
429 |
+
with open(results_file, 'a') as f:
|
430 |
+
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
|
431 |
+
if len(opt.name) and opt.bucket:
|
432 |
+
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
433 |
+
|
434 |
+
# Log
|
435 |
+
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
436 |
+
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
437 |
+
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
438 |
+
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
439 |
+
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
440 |
+
if tb_writer:
|
441 |
+
tb_writer.add_scalar(tag, x, epoch) # tensorboard
|
442 |
+
if wandb_logger.wandb:
|
443 |
+
wandb_logger.log({tag: x}) # W&B
|
444 |
+
|
445 |
+
# Update best mAP
|
446 |
+
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
447 |
+
if fi > best_fitness:
|
448 |
+
best_fitness = fi
|
449 |
+
wandb_logger.end_epoch(best_result=best_fitness == fi)
|
450 |
+
|
451 |
+
# Save model
|
452 |
+
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
|
453 |
+
ckpt = {'epoch': epoch,
|
454 |
+
'best_fitness': best_fitness,
|
455 |
+
'training_results': results_file.read_text(),
|
456 |
+
'model': deepcopy(model.module if is_parallel(model) else model).half(),
|
457 |
+
'ema': deepcopy(ema.ema).half(),
|
458 |
+
'updates': ema.updates,
|
459 |
+
'optimizer': optimizer.state_dict(),
|
460 |
+
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
|
461 |
+
|
462 |
+
# Save last, best and delete
|
463 |
+
torch.save(ckpt, last)
|
464 |
+
if best_fitness == fi:
|
465 |
+
torch.save(ckpt, best)
|
466 |
+
if (best_fitness == fi) and (epoch >= 200):
|
467 |
+
torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
|
468 |
+
if epoch == 0:
|
469 |
+
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
470 |
+
elif ((epoch+1) % 25) == 0:
|
471 |
+
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
472 |
+
elif epoch >= (epochs-5):
|
473 |
+
torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
|
474 |
+
if wandb_logger.wandb:
|
475 |
+
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
|
476 |
+
wandb_logger.log_model(
|
477 |
+
last.parent, opt, epoch, fi, best_model=best_fitness == fi)
|
478 |
+
del ckpt
|
479 |
+
|
480 |
+
# end epoch ----------------------------------------------------------------------------------------------------
|
481 |
+
# end training
|
482 |
+
if rank in [-1, 0]:
|
483 |
+
# Plots
|
484 |
+
if plots:
|
485 |
+
plot_results(save_dir=save_dir) # save as results.png
|
486 |
+
if wandb_logger.wandb:
|
487 |
+
files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
488 |
+
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
|
489 |
+
if (save_dir / f).exists()]})
|
490 |
+
# Test best.pt
|
491 |
+
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
492 |
+
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
493 |
+
for m in (last, best) if best.exists() else (last): # speed, mAP tests
|
494 |
+
results, _, _ = test.test(opt.data,
|
495 |
+
batch_size=batch_size * 2,
|
496 |
+
imgsz=imgsz_test,
|
497 |
+
conf_thres=0.001,
|
498 |
+
iou_thres=0.7,
|
499 |
+
model=attempt_load(m, device).half(),
|
500 |
+
single_cls=opt.single_cls,
|
501 |
+
dataloader=testloader,
|
502 |
+
save_dir=save_dir,
|
503 |
+
save_json=True,
|
504 |
+
plots=False,
|
505 |
+
is_coco=is_coco)
|
506 |
+
|
507 |
+
# Strip optimizers
|
508 |
+
final = best if best.exists() else last # final model
|
509 |
+
for f in last, best:
|
510 |
+
if f.exists():
|
511 |
+
strip_optimizer(f) # strip optimizers
|
512 |
+
if opt.bucket:
|
513 |
+
os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
|
514 |
+
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
|
515 |
+
wandb_logger.wandb.log_artifact(str(final), type='model',
|
516 |
+
name='run_' + wandb_logger.wandb_run.id + '_model',
|
517 |
+
aliases=['last', 'best', 'stripped'])
|
518 |
+
wandb_logger.finish_run()
|
519 |
+
else:
|
520 |
+
dist.destroy_process_group()
|
521 |
+
torch.cuda.empty_cache()
|
522 |
+
return results
|
523 |
+
|
524 |
+
|
525 |
+
if __name__ == '__main__':
|
526 |
+
parser = argparse.ArgumentParser()
|
527 |
+
parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
|
528 |
+
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
529 |
+
parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
|
530 |
+
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
|
531 |
+
parser.add_argument('--epochs', type=int, default=300)
|
532 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
|
533 |
+
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
|
534 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
535 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
536 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
537 |
+
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
538 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
539 |
+
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
540 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
541 |
+
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
542 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
543 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
544 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
545 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
546 |
+
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
547 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
548 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
549 |
+
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
550 |
+
parser.add_argument('--project', default='runs/train', help='save to project/name')
|
551 |
+
parser.add_argument('--entity', default=None, help='W&B entity')
|
552 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
553 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
554 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
555 |
+
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
|
556 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
557 |
+
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
|
558 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
|
559 |
+
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
|
560 |
+
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
561 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2')
|
562 |
+
opt = parser.parse_args()
|
563 |
+
|
564 |
+
# Set DDP variables
|
565 |
+
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
566 |
+
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
567 |
+
set_logging(opt.global_rank)
|
568 |
+
#if opt.global_rank in [-1, 0]:
|
569 |
+
# check_git_status()
|
570 |
+
# check_requirements()
|
571 |
+
|
572 |
+
# Resume
|
573 |
+
wandb_run = check_wandb_resume(opt)
|
574 |
+
if opt.resume and not wandb_run: # resume an interrupted run
|
575 |
+
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
576 |
+
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
577 |
+
apriori = opt.global_rank, opt.local_rank
|
578 |
+
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
579 |
+
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
|
580 |
+
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
|
581 |
+
logger.info('Resuming training from %s' % ckpt)
|
582 |
+
else:
|
583 |
+
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
|
584 |
+
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
585 |
+
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
586 |
+
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
587 |
+
opt.name = 'evolve' if opt.evolve else opt.name
|
588 |
+
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
589 |
+
|
590 |
+
# DDP mode
|
591 |
+
opt.total_batch_size = opt.batch_size
|
592 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
593 |
+
if opt.local_rank != -1:
|
594 |
+
assert torch.cuda.device_count() > opt.local_rank
|
595 |
+
torch.cuda.set_device(opt.local_rank)
|
596 |
+
device = torch.device('cuda', opt.local_rank)
|
597 |
+
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
598 |
+
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
599 |
+
opt.batch_size = opt.total_batch_size // opt.world_size
|
600 |
+
|
601 |
+
# Hyperparameters
|
602 |
+
with open(opt.hyp) as f:
|
603 |
+
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
|
604 |
+
|
605 |
+
# Train
|
606 |
+
logger.info(opt)
|
607 |
+
if not opt.evolve:
|
608 |
+
tb_writer = None # init loggers
|
609 |
+
if opt.global_rank in [-1, 0]:
|
610 |
+
prefix = colorstr('tensorboard: ')
|
611 |
+
logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
|
612 |
+
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
613 |
+
train(hyp, opt, device, tb_writer)
|
614 |
+
|
615 |
+
# Evolve hyperparameters (optional)
|
616 |
+
else:
|
617 |
+
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
618 |
+
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
619 |
+
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
620 |
+
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
621 |
+
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
622 |
+
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
623 |
+
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
624 |
+
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
625 |
+
'box': (1, 0.02, 0.2), # box loss gain
|
626 |
+
'cls': (1, 0.2, 4.0), # cls loss gain
|
627 |
+
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
628 |
+
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
629 |
+
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
630 |
+
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
631 |
+
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
632 |
+
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
633 |
+
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
634 |
+
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
635 |
+
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
636 |
+
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
637 |
+
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
638 |
+
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
639 |
+
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
640 |
+
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
641 |
+
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
642 |
+
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
643 |
+
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
644 |
+
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
645 |
+
'mixup': (1, 0.0, 1.0), # image mixup (probability)
|
646 |
+
'copy_paste': (1, 0.0, 1.0), # segment copy-paste (probability)
|
647 |
+
'paste_in': (1, 0.0, 1.0)} # segment copy-paste (probability)
|
648 |
+
|
649 |
+
with open(opt.hyp, errors='ignore') as f:
|
650 |
+
hyp = yaml.safe_load(f) # load hyps dict
|
651 |
+
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
652 |
+
hyp['anchors'] = 3
|
653 |
+
|
654 |
+
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
655 |
+
opt.notest, opt.nosave = True, True # only test/save final epoch
|
656 |
+
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
657 |
+
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
658 |
+
if opt.bucket:
|
659 |
+
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
660 |
+
|
661 |
+
for _ in range(300): # generations to evolve
|
662 |
+
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
663 |
+
# Select parent(s)
|
664 |
+
parent = 'single' # parent selection method: 'single' or 'weighted'
|
665 |
+
x = np.loadtxt('evolve.txt', ndmin=2)
|
666 |
+
n = min(5, len(x)) # number of previous results to consider
|
667 |
+
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
668 |
+
w = fitness(x) - fitness(x).min() # weights
|
669 |
+
if parent == 'single' or len(x) == 1:
|
670 |
+
# x = x[random.randint(0, n - 1)] # random selection
|
671 |
+
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
672 |
+
elif parent == 'weighted':
|
673 |
+
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
674 |
+
|
675 |
+
# Mutate
|
676 |
+
mp, s = 0.8, 0.2 # mutation probability, sigma
|
677 |
+
npr = np.random
|
678 |
+
npr.seed(int(time.time()))
|
679 |
+
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
680 |
+
ng = len(meta)
|
681 |
+
v = np.ones(ng)
|
682 |
+
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
683 |
+
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
684 |
+
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
685 |
+
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
686 |
+
|
687 |
+
# Constrain to limits
|
688 |
+
for k, v in meta.items():
|
689 |
+
hyp[k] = max(hyp[k], v[1]) # lower limit
|
690 |
+
hyp[k] = min(hyp[k], v[2]) # upper limit
|
691 |
+
hyp[k] = round(hyp[k], 5) # significant digits
|
692 |
+
|
693 |
+
# Train mutation
|
694 |
+
results = train(hyp.copy(), opt, device)
|
695 |
+
|
696 |
+
# Write mutation results
|
697 |
+
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
698 |
+
|
699 |
+
# Plot results
|
700 |
+
plot_evolution(yaml_file)
|
701 |
+
print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
702 |
+
f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|