owaiskha9654 commited on
Commit
5e9c4db
·
1 Parent(s): 454ed76

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +186 -0
app.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+
4
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
5
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
6
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
7
+
8
+ import argparse
9
+ import time
10
+ from pathlib import Path
11
+
12
+ import cv2
13
+ import torch
14
+ import torch.backends.cudnn as cudnn
15
+ from numpy import random
16
+
17
+ from models.experimental import attempt_load
18
+ from utils.datasets import LoadStreams, LoadImages
19
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
20
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
21
+ from utils.plots import plot_one_box
22
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
23
+ from PIL import Image
24
+
25
+
26
+
27
+
28
+ def detect(img,model):
29
+ parser = argparse.ArgumentParser()
30
+ parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
31
+ parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
32
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
33
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
34
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
35
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
36
+ parser.add_argument('--view-img', action='store_true', help='display results')
37
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
38
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
39
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
40
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
41
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
42
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
43
+ parser.add_argument('--update', action='store_true', help='update all models')
44
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
45
+ parser.add_argument('--name', default='exp', help='save results to project/name')
46
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
47
+ parser.add_argument('--trace', action='store_true', help='trace model')
48
+ opt = parser.parse_args()
49
+ img.save("Inference/test.jpg")
50
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
51
+ save_img = True # save inference images
52
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
53
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
54
+
55
+ # Directories
56
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
57
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
58
+
59
+ # Initialize
60
+ set_logging()
61
+ device = select_device(opt.device)
62
+ half = device.type != 'cpu' # half precision only supported on CUDA
63
+
64
+ # Load model
65
+ model = attempt_load(weights, map_location=device) # load FP32 model
66
+ stride = int(model.stride.max()) # model stride
67
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
68
+
69
+ if trace:
70
+ model = TracedModel(model, device, opt.img_size)
71
+
72
+ if half:
73
+ model.half() # to FP16
74
+
75
+ # Second-stage classifier
76
+ classify = False
77
+ if classify:
78
+ modelc = load_classifier(name='resnet101', n=2) # initialize
79
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
80
+
81
+ # Set Dataloader
82
+ vid_path, vid_writer = None, None
83
+ if webcam:
84
+ view_img = check_imshow()
85
+ cudnn.benchmark = True # set True to speed up constant image size inference
86
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
87
+ else:
88
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
89
+
90
+ # Get names and colors
91
+ names = model.module.names if hasattr(model, 'module') else model.names
92
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
93
+
94
+ # Run inference
95
+ if device.type != 'cpu':
96
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
97
+ t0 = time.time()
98
+ for path, img, im0s, vid_cap in dataset:
99
+ img = torch.from_numpy(img).to(device)
100
+ img = img.half() if half else img.float() # uint8 to fp16/32
101
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
102
+ if img.ndimension() == 3:
103
+ img = img.unsqueeze(0)
104
+
105
+ # Inference
106
+ t1 = time_synchronized()
107
+ pred = model(img, augment=opt.augment)[0]
108
+
109
+ # Apply NMS
110
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
111
+ t2 = time_synchronized()
112
+
113
+ # Apply Classifier
114
+ if classify:
115
+ pred = apply_classifier(pred, modelc, img, im0s)
116
+
117
+ # Process detections
118
+ for i, det in enumerate(pred): # detections per image
119
+ if webcam: # batch_size >= 1
120
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
121
+ else:
122
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
123
+
124
+ p = Path(p) # to Path
125
+ save_path = str(save_dir / p.name) # img.jpg
126
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
127
+ s += '%gx%g ' % img.shape[2:] # print string
128
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
129
+ if len(det):
130
+ # Rescale boxes from img_size to im0 size
131
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
132
+
133
+ # Print results
134
+ for c in det[:, -1].unique():
135
+ n = (det[:, -1] == c).sum() # detections per class
136
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
137
+
138
+ # Write results
139
+ for *xyxy, conf, cls in reversed(det):
140
+ if save_txt: # Write to file
141
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
142
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
143
+ with open(txt_path + '.txt', 'a') as f:
144
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
145
+
146
+ if save_img or view_img: # Add bbox to image
147
+ label = f'{names[int(cls)]} {conf:.2f}'
148
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
149
+
150
+ # Print time (inference + NMS)
151
+ #print(f'{s}Done. ({t2 - t1:.3f}s)')
152
+
153
+ # Stream results
154
+ if view_img:
155
+ cv2.imshow(str(p), im0)
156
+ cv2.waitKey(1) # 1 millisecond
157
+
158
+ # Save results (image with detections)
159
+ if save_img:
160
+ if dataset.mode == 'image':
161
+ cv2.imwrite(save_path, im0)
162
+ else: # 'video' or 'stream'
163
+ if vid_path != save_path: # new video
164
+ vid_path = save_path
165
+ if isinstance(vid_writer, cv2.VideoWriter):
166
+ vid_writer.release() # release previous video writer
167
+ if vid_cap: # video
168
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
169
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
170
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
171
+ else: # stream
172
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
173
+ save_path += '.mp4'
174
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
175
+ vid_writer.write(im0)
176
+
177
+ if save_txt or save_img:
178
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
179
+ #print(f"Results saved to {save_dir}{s}")
180
+
181
+ print(f'Done. ({time.time() - t0:.3f}s)')
182
+
183
+ return Image.fromarray(im0[:,:,::-1])
184
+
185
+
186
+ gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolov7","yolov7-e6"])], gr.Image(type="pil"),title="Yolov7",examples=[["horses.jpeg", "yolov7"]],description="demo for <a href='https://github.com/WongKinYiu/yolov7' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch()