Spaces:
Runtime error
Runtime error
owaiskaifi
commited on
Commit
•
50c3b64
1
Parent(s):
95fe902
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,26 @@
|
|
1 |
-
import
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import Image
|
4 |
-
import qrcode
|
5 |
-
from pathlib import Path
|
6 |
-
from multiprocessing import cpu_count
|
7 |
-
import requests
|
8 |
-
import io
|
9 |
-
import os
|
10 |
-
|
11 |
-
|
12 |
from PIL import Image
|
|
|
13 |
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
14 |
from diffusers.utils import load_image
|
15 |
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
StableDiffusionControlNetImg2ImgPipeline,
|
20 |
-
ControlNetModel,
|
21 |
-
DDIMScheduler,
|
22 |
-
DPMSolverMultistepScheduler,
|
23 |
-
DEISMultistepScheduler,
|
24 |
-
HeunDiscreteScheduler,
|
25 |
-
EulerDiscreteScheduler,
|
26 |
-
)
|
27 |
-
|
28 |
-
qrcode_generator = qrcode.QRCode(
|
29 |
-
version=1,
|
30 |
-
error_correction=qrcode.ERROR_CORRECT_H,
|
31 |
-
box_size=10,
|
32 |
-
border=4,
|
33 |
-
)
|
34 |
-
|
35 |
-
controlnet = ControlNetModel.from_pretrained(
|
36 |
-
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
37 |
-
)
|
38 |
|
39 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
40 |
"runwayml/stable-diffusion-v1-5",
|
41 |
controlnet=controlnet,
|
42 |
safety_checker=None,
|
43 |
-
torch_dtype=torch.float16
|
44 |
-
)
|
|
|
45 |
pipe.enable_xformers_memory_efficient_attention()
|
46 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
47 |
pipe.enable_model_cpu_offload()
|
48 |
|
49 |
-
|
50 |
-
def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
51 |
input_image = input_image.convert("RGB")
|
52 |
W, H = input_image.size
|
53 |
k = float(resolution) / min(H, W)
|
@@ -58,126 +31,38 @@ def resize_for_condition_image(input_image: Image.Image, resolution: int):
|
|
58 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
59 |
return img
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
94 |
-
|
95 |
-
if qr_code_content != "" or qrcode_image.size == (1, 1):
|
96 |
-
qr = qrcode.QRCode(
|
97 |
-
version=1,
|
98 |
-
error_correction=qrcode.constants.ERROR_CORRECT_H,
|
99 |
-
box_size=10,
|
100 |
-
border=4,
|
101 |
-
)
|
102 |
-
qr.add_data(qr_code_content)
|
103 |
-
qr.make(fit=True)
|
104 |
-
qrcode_image = qr.make_image(fill_color="black", back_color="white")
|
105 |
-
|
106 |
-
if init_image is None:
|
107 |
-
if use_qr_code_as_init_image:
|
108 |
-
init_image = qrcode_image.convert("RGB")
|
109 |
-
|
110 |
-
resolution = controlnet.config.resolution
|
111 |
-
qrcode_image = resize_for_condition_image(qrcode_image, resolution)
|
112 |
-
if init_image is not None:
|
113 |
-
init_image = init_image.convert("RGB")
|
114 |
-
init_image = resize_for_condition_image(init_image, resolution)
|
115 |
-
init_image = torch.nn.functional.interpolate(
|
116 |
-
torch.nn.functional.to_tensor(init_image).unsqueeze(0),
|
117 |
-
size=(resolution, resolution),
|
118 |
-
mode="bilinear",
|
119 |
-
align_corners=False,
|
120 |
-
)[0].unsqueeze(0)
|
121 |
-
else:
|
122 |
-
init_image = torch.zeros(
|
123 |
-
(1, 3, resolution, resolution), device=pipe.device
|
124 |
-
).to(dtype=torch.float32)
|
125 |
-
|
126 |
-
with torch.no_grad():
|
127 |
-
result_image = pipe(
|
128 |
-
qr_code_condition=qrcode_image,
|
129 |
-
prompt=prompt,
|
130 |
-
negative_prompt=negative_prompt,
|
131 |
-
init_image=init_image,
|
132 |
-
strength=strength,
|
133 |
-
guidance_scale=guidance_scale,
|
134 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
135 |
-
disable_progress_bar=True,
|
136 |
-
seed=generator,
|
137 |
-
).cpu()
|
138 |
-
|
139 |
-
result_image = (
|
140 |
-
result_image.clamp(-1, 1).squeeze().permute(1, 2, 0).numpy() * 255
|
141 |
-
)
|
142 |
-
result_image = Image.fromarray(result_image.astype("uint8"))
|
143 |
-
|
144 |
-
return result_image
|
145 |
-
|
146 |
-
|
147 |
-
app = Flask(__name__)
|
148 |
-
|
149 |
-
@app.route('/generate_qr_code', methods=['POST'])
|
150 |
-
def generate_qr_code():
|
151 |
-
qr_code_content = request.json['qr_code_content']
|
152 |
-
prompt = request.json['prompt']
|
153 |
-
negative_prompt = request.json['negative_prompt']
|
154 |
-
guidance_scale = float(request.json.get('guidance_scale', 10.0))
|
155 |
-
controlnet_conditioning_scale = float(request.json.get('controlnet_conditioning_scale', 2.0))
|
156 |
-
strength = float(request.json.get('strength', 0.8))
|
157 |
-
seed = int(request.json.get('seed', -1))
|
158 |
-
init_image = None
|
159 |
-
qrcode_image = None
|
160 |
-
use_qr_code_as_init_image = request.json.get('use_qr_code_as_init_image', True)
|
161 |
-
sampler = request.json.get('sampler', 'DPM++ Karras SDE')
|
162 |
-
|
163 |
-
try:
|
164 |
-
result_image = inference(qr_code_content, prompt, negative_prompt, guidance_scale,
|
165 |
-
controlnet_conditioning_scale, strength, seed, init_image,
|
166 |
-
qrcode_image, use_qr_code_as_init_image, sampler)
|
167 |
-
|
168 |
-
image_bytes = io.BytesIO()
|
169 |
-
result_image.save(image_bytes, format='PNG')
|
170 |
-
image_base64 = base64.b64encode(image_bytes.getvalue()).decode('utf-8')
|
171 |
-
|
172 |
-
return jsonify({'image_base64': image_base64})
|
173 |
-
except Exception as e:
|
174 |
-
return jsonify({'error': str(e)}), 500
|
175 |
-
|
176 |
-
|
177 |
-
@app.route('/health', methods=['GET'])
|
178 |
-
def health_check():
|
179 |
-
return 'OK'
|
180 |
-
|
181 |
|
182 |
if __name__ == '__main__':
|
183 |
-
app.run(
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import torch
|
4 |
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
5 |
from diffusers.utils import load_image
|
6 |
|
7 |
+
app = Flask(__name__)
|
8 |
|
9 |
+
controlnet = ControlNetModel.from_pretrained("DionTimmer/controlnet_qrcode-control_v1p_sd15",
|
10 |
+
torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
13 |
"runwayml/stable-diffusion-v1-5",
|
14 |
controlnet=controlnet,
|
15 |
safety_checker=None,
|
16 |
+
torch_dtype=torch.float16
|
17 |
+
)
|
18 |
+
|
19 |
pipe.enable_xformers_memory_efficient_attention()
|
20 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
21 |
pipe.enable_model_cpu_offload()
|
22 |
|
23 |
+
def resize_for_condition_image(input_image: Image, resolution: int):
|
|
|
24 |
input_image = input_image.convert("RGB")
|
25 |
W, H = input_image.size
|
26 |
k = float(resolution) / min(H, W)
|
|
|
31 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
32 |
return img
|
33 |
|
34 |
+
@app.route('/generate_image', methods=['POST'])
|
35 |
+
def generate_image():
|
36 |
+
# Get input parameters from the request
|
37 |
+
prompt = request.json.get('prompt')
|
38 |
+
negative_prompt = request.json.get('negative_prompt')
|
39 |
+
image_url = request.json.get('image_url')
|
40 |
+
control_image_url = request.json.get('control_image_url')
|
41 |
+
|
42 |
+
# Load the images from URLs
|
43 |
+
source_image = load_image(image_url)
|
44 |
+
init_image = load_image(control_image_url)
|
45 |
+
|
46 |
+
# Resize images for conditioning
|
47 |
+
condition_image = resize_for_condition_image(source_image, 768)
|
48 |
+
init_image = resize_for_condition_image(init_image, 768)
|
49 |
+
|
50 |
+
# Generate the image using the pipeline
|
51 |
+
generator = torch.manual_seed(123121231)
|
52 |
+
image = pipe(prompt=prompt,
|
53 |
+
negative_prompt=negative_prompt,
|
54 |
+
image=init_image,
|
55 |
+
control_image=condition_image,
|
56 |
+
width=768,
|
57 |
+
height=768,
|
58 |
+
guidance_scale=20,
|
59 |
+
controlnet_conditioning_scale=1.5,
|
60 |
+
generator=generator,
|
61 |
+
strength=0.9,
|
62 |
+
num_inference_steps=150)
|
63 |
+
|
64 |
+
# Return the generated image
|
65 |
+
return jsonify({'image': image.images[0]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
if __name__ == '__main__':
|
68 |
+
app.run()
|