Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,63 +62,55 @@ OPTIONAL_LORA_MAP = {
|
|
| 62 |
}
|
| 63 |
OPTIONAL_LORA_CHOICES = {k: v for k, v in OPTIONAL_LORA_MAP.items() if v in SUCCESSFULLY_LOADED_LORAS}
|
| 64 |
|
| 65 |
-
# At startup,
|
| 66 |
-
print("
|
| 67 |
-
pipe.
|
| 68 |
|
| 69 |
print("Initialization complete. Gradio is starting...")
|
| 70 |
|
| 71 |
@spaces.GPU()
|
| 72 |
def generate(prompt, negative_prompt, width, height, num_inference_steps, optional_lora_id, progress=gr.Progress(track_tqdm=True)):
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
adapter_weights.append(1.0)
|
| 85 |
-
|
| 86 |
-
# If an optional LoRA is selected, add it to the list
|
| 87 |
-
if optional_lora_id and optional_lora_id != "None":
|
| 88 |
-
internal_name_to_add = OPTIONAL_LORA_CHOICES.get(optional_lora_id)
|
| 89 |
-
if internal_name_to_add:
|
| 90 |
-
active_adapters.append(internal_name_to_add)
|
| 91 |
-
adapter_weights.append(1.0)
|
| 92 |
-
|
| 93 |
-
# --- Step 2: Apply the adapters and weights for this run using the correct function ---
|
| 94 |
-
if active_adapters:
|
| 95 |
-
print(f"Activating adapters: {active_adapters} with weights: {adapter_weights}")
|
| 96 |
-
# This is the correct, modern way to set adapters and their weights.
|
| 97 |
-
pipe.set_adapters(active_adapters, adapter_weights=adapter_weights)
|
| 98 |
-
else:
|
| 99 |
-
print("No LoRAs are active for this run.")
|
| 100 |
-
# ensure all are disabled if for some reason none were selected
|
| 101 |
-
pipe.disable_lora()
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
finally:
|
| 120 |
-
print("Disabling LoRAs after run to reset state.")
|
| 121 |
-
pipe.disable_lora()
|
| 122 |
|
| 123 |
# --- Gradio Interface ---
|
| 124 |
iface = gr.Interface(
|
|
|
|
| 62 |
}
|
| 63 |
OPTIONAL_LORA_CHOICES = {k: v for k, v in OPTIONAL_LORA_MAP.items() if v in SUCCESSFULLY_LOADED_LORAS}
|
| 64 |
|
| 65 |
+
# At startup, we set a known initial state. Setting no adapters is the cleanest start.
|
| 66 |
+
print("Setting a clean initial state (no adapters active).")
|
| 67 |
+
pipe.set_adapters([], adapter_weights=[])
|
| 68 |
|
| 69 |
print("Initialization complete. Gradio is starting...")
|
| 70 |
|
| 71 |
@spaces.GPU()
|
| 72 |
def generate(prompt, negative_prompt, width, height, num_inference_steps, optional_lora_id, progress=gr.Progress(track_tqdm=True)):
|
| 73 |
|
| 74 |
+
# --- Step 1: ALWAYS build the desired state from scratch for THIS run ---
|
| 75 |
+
|
| 76 |
+
active_adapters = []
|
| 77 |
+
adapter_weights = []
|
| 78 |
+
|
| 79 |
+
# Always include the base LoRA if it was loaded successfully
|
| 80 |
+
if CAUSVID_NAME in SUCCESSFULLY_LOADED_LORAS:
|
| 81 |
+
active_adapters.append(CAUSVID_NAME)
|
| 82 |
+
adapter_weights.append(1.0)
|
| 83 |
|
| 84 |
+
# If an optional LoRA is selected, add it to the list
|
| 85 |
+
if optional_lora_id and optional_lora_id != "None":
|
| 86 |
+
internal_name_to_add = OPTIONAL_LORA_CHOICES.get(optional_lora_id)
|
| 87 |
+
if internal_name_to_add:
|
| 88 |
+
active_adapters.append(internal_name_to_add)
|
| 89 |
adapter_weights.append(1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
+
# --- Step 2: Apply the calculated state, OVERWRITING any previous state ---
|
| 92 |
+
# This single call is the source of truth for the run.
|
| 93 |
+
print(f"Setting adapters for this run: {active_adapters} with weights: {adapter_weights}")
|
| 94 |
+
pipe.set_adapters(active_adapters, adapter_weights=adapter_weights)
|
| 95 |
+
|
| 96 |
+
apply_cache_on_pipe(pipe)
|
| 97 |
+
|
| 98 |
+
# --- Step 3: Run inference ---
|
| 99 |
+
output = pipe(
|
| 100 |
+
prompt=prompt,
|
| 101 |
+
negative_prompt=negative_prompt,
|
| 102 |
+
height=height,
|
| 103 |
+
width=width,
|
| 104 |
+
num_frames=1,
|
| 105 |
+
num_inference_steps=num_inference_steps,
|
| 106 |
+
guidance_scale=1.0,
|
| 107 |
+
)
|
| 108 |
+
image = output.frames[0][0]
|
| 109 |
+
image = (image * 255).astype(np.uint8)
|
| 110 |
+
return Image.fromarray(image)
|
| 111 |
+
|
| 112 |
+
# --- No cleanup step is needed, as the next run will set its own state ---
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# --- Gradio Interface ---
|
| 116 |
iface = gr.Interface(
|