ovi054 commited on
Commit
3f4cfaa
1 Parent(s): daa7932

New Output Field

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. Util/Fonts/kalpurush.ttf +3 -0
  3. app.py +31 -4
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  *.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  *.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
36
+ *.ttf filter=lfs diff=lfs merge=lfs -text
Util/Fonts/kalpurush.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83613a03e53aad8337f2be9fb974409a23c1d99b3b4b494567ba9d156c492b01
3
+ size 314592
app.py CHANGED
@@ -62,7 +62,10 @@ import cv2
62
  # from myverify import verify
63
  #from detect_frame import detect_frame
64
  # import pathlib
65
-
 
 
 
66
 
67
  #import more
68
  import tensorflow as tf
@@ -528,7 +531,31 @@ def model_predict(word):
528
  # os.makedirs(folderName)
529
  # fileName = folderName+ "/" + time_now + ".png"
530
  # cv2.imwrite(fileName,word)
531
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532
  '''
533
  output=''
534
  for i in range(0,len(final)):
@@ -547,6 +574,6 @@ def model_predict(word):
547
  import gradio as gr
548
 
549
 
550
- demo = gr.Interface(fn=model_predict, inputs= "paint", outputs="text")
551
 
552
- demo.launch()
 
62
  # from myverify import verify
63
  #from detect_frame import detect_frame
64
  # import pathlib
65
+ HF_TOKEN = os.getenv('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')
66
+ hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "ocr_flag")
67
+ from PIL import ImageFont, ImageDraw, Image
68
+ font = ImageFont.truetype("Util\Fonts\kalpurush.ttf", 35)
69
 
70
  #import more
71
  import tensorflow as tf
 
531
  # os.makedirs(folderName)
532
  # fileName = folderName+ "/" + time_now + ".png"
533
  # cv2.imwrite(fileName,word)
534
+ pil_image = Image.fromarray(word)
535
+ #pil_image.convert("RGBA")
536
+ for i in range(0,15):
537
+ if mark[i]==0:
538
+ continue
539
+ x0=(detections['detection_boxes'][i][0])*row
540
+ y0=(detections['detection_boxes'][i][1])*col
541
+ x1=(detections['detection_boxes'][i][2])*row
542
+ y1=(detections['detection_boxes'][i][3])*col
543
+ pt1 = (y0,x0)
544
+ pt2 = (y1,x1)
545
+ # color = (0, 0, 255) # Red color in BGR format
546
+ # thickness = 2 # Border thickness in pixels
547
+ # word = cv2.rectangle(word, pt1, pt2, color, thickness)
548
+ draw = ImageDraw.Draw(pil_image,"RGBA")
549
+ curi=detections['detection_classes'][i]
550
+ classi=classes[curi]
551
+ shape = [(y0,x0), (y1, x1)]
552
+ draw.rectangle(shape,fill=(0, 100, 200, 127))
553
+ draw.rectangle(shape, outline=(0, 0, 0, 127), width=3)
554
+ bbox = draw.textbbox(pt1, classi, font=font)
555
+ draw.rectangle(bbox, fill=(200, 100, 0, 200))
556
+ draw.text(pt1, classi, font=font, fill=(0,0,0,255))
557
+ newWordImg = np.asarray(pil_image)
558
+ return newWordImg, output
559
  '''
560
  output=''
561
  for i in range(0,len(final)):
 
574
  import gradio as gr
575
 
576
 
577
+ demo = gr.Interface(fn=model_predict, inputs= "paint", outputs=["image","text"],allow_flagging="auto",flagging_callback=hf_writer)
578
 
579
+ demo.launch()