ouyangjutian commited on
Commit
efecdf0
·
1 Parent(s): 10392b4

update huggingface space

Browse files
Files changed (2) hide show
  1. index.html +0 -34
  2. local_app.py +72 -0
index.html DELETED
@@ -1,34 +0,0 @@
1
- <!doctype html>
2
- <html>
3
-
4
- <head>
5
- <meta charset="utf-8" />
6
- <meta name="viewport" content="width=device-width" />
7
- <title>My static Space</title>
8
- <style>
9
- html,
10
- body {
11
- margin: 0;
12
- padding: 0;
13
- height: 100%;
14
- }
15
-
16
- body {
17
- display: flex;
18
- justify-content: center;
19
- align-items: center;
20
- }
21
-
22
- iframe {
23
- width: 430px;
24
- height: 932px;
25
- border: none;
26
- }
27
- </style>
28
- </head>
29
-
30
- <body>
31
- <iframe src="https://colearn.intern-ai.org.cn/cobuild" title="description"></iframe>
32
- </body>
33
-
34
- </html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
local_app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_index.llms.huggingface import HuggingFaceLLM
5
+
6
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
7
+ st.title("llama_index_demo")
8
+
9
+ # 初始化模型
10
+ @st.cache_resource
11
+ def init_models():
12
+ embed_model = HuggingFaceEmbedding(
13
+ model_name="/root/model/sentence-transformer"
14
+ )
15
+ Settings.embed_model = embed_model
16
+
17
+ llm = HuggingFaceLLM(
18
+ model_name="/root/model/internlm2-chat-1_8b",
19
+ tokenizer_name="/root/model/internlm2-chat-1_8b",
20
+ model_kwargs={"trust_remote_code": True},
21
+ tokenizer_kwargs={"trust_remote_code": True}
22
+ )
23
+ Settings.llm = llm
24
+
25
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
26
+ index = VectorStoreIndex.from_documents(documents)
27
+ query_engine = index.as_query_engine()
28
+
29
+ return query_engine
30
+
31
+ # 检查是否需要初始化模型
32
+ if 'query_engine' not in st.session_state:
33
+ st.session_state['query_engine'] = init_models()
34
+
35
+ def greet2(question):
36
+ response = st.session_state['query_engine'].query(question)
37
+ return response
38
+
39
+
40
+ # Store LLM generated responses
41
+ if "messages" not in st.session_state.keys():
42
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
43
+
44
+ # Display or clear chat messages
45
+ for message in st.session_state.messages:
46
+ with st.chat_message(message["role"]):
47
+ st.write(message["content"])
48
+
49
+ def clear_chat_history():
50
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
51
+
52
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
53
+
54
+ # Function for generating LLaMA2 response
55
+ def generate_llama_index_response(prompt_input):
56
+ return greet2(prompt_input)
57
+
58
+ # User-provided prompt
59
+ if prompt := st.chat_input():
60
+ st.session_state.messages.append({"role": "user", "content": prompt})
61
+ with st.chat_message("user"):
62
+ st.write(prompt)
63
+
64
+ # Gegenerate_llama_index_response last message is not from assistant
65
+ if st.session_state.messages[-1]["role"] != "assistant":
66
+ with st.chat_message("assistant"):
67
+ with st.spinner("Thinking..."):
68
+ response = generate_llama_index_response(prompt)
69
+ placeholder = st.empty()
70
+ placeholder.markdown(response)
71
+ message = {"role": "assistant", "content": response}
72
+ st.session_state.messages.append(message)