crytion's picture
Upload 5 files
3a5fce1
raw
history blame
7.54 kB
from PIL import Image
import numpy as np
import cv2
import torchvision.transforms as transforms
import torch
import io
import os
import functools
class DataLoader():
def __init__(self, opt, cv_img):
super(DataLoader, self).__init__()
self.dataset = Dataset()
self.dataset.initialize(opt, cv_img)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
shuffle=not opt.serial_batches,
num_workers=int(opt.nThreads))
def load_data(self):
return self.dataloader
def __len__(self):
return 1
class Dataset(torch.utils.data.Dataset):
def __init__(self):
super(Dataset, self).__init__()
def initialize(self, opt, cv_img):
self.opt = opt
self.root = opt.dataroot
self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
self.dataset_size = 1
def __getitem__(self, index):
transform_A = get_transform(self.opt)
A_tensor = transform_A(self.A.convert('RGB'))
B_tensor = inst_tensor = feat_tensor = 0
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': ""}
return input_dict
def __len__(self):
return 1
class DeepModel(torch.nn.Module):
def initialize(self, opt):
torch.cuda.empty_cache()
self.opt = opt
self.gpu_ids = [] #FIX CPU
self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG,
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
opt.n_blocks_local, opt.norm, self.gpu_ids)
# load networks
self.__load_network(self.netG)
def inference(self, label, inst):
# Encode Inputs
input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True)
# Fake Generation
input_concat = input_label
with torch.no_grad():
fake_image = self.netG.forward(input_concat)
return fake_image
# helper loading function that can be used by subclasses
def __load_network(self, network):
save_path = os.path.join(self.opt.checkpoints_dir)
network.load_state_dict(torch.load(save_path))
def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):
if (len(self.gpu_ids) > 0):
input_label = label_map.data.cuda() #GPU
else:
input_label = label_map.data #CPU
return input_label, inst_map, real_image, feat_map
def __weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1,
n_blocks_local=3, norm='instance', gpu_ids=[]):
norm_layer = self.__get_norm_layer(norm_type=norm)
netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
if len(gpu_ids) > 0:
netG.cuda(gpu_ids[0])
netG.apply(self.__weights_init)
return netG
def __get_norm_layer(self, norm_type='instance'):
norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False)
return norm_layer
##############################################################################
# Generator
##############################################################################
class GlobalGenerator(torch.nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d,
padding_type='reflect'):
assert(n_blocks >= 0)
super(GlobalGenerator, self).__init__()
activation = torch.nn.ReLU(True)
model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
### resnet blocks
mult = 2**n_downsampling
for i in range(n_blocks):
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
### upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]
model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()]
self.model = torch.nn.Sequential(*model)
def forward(self, input):
return self.model(input)
# Define a resnet block
class ResnetBlock(torch.nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [torch.nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [torch.nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [torch.nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [torch.nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [torch.nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return torch.nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
# Data utils:
def get_transform(opt, method=Image.BICUBIC, normalize=True):
transform_list = []
base = float(2 ** opt.n_downsample_global)
if opt.netG == 'local':
base *= (2 ** opt.n_local_enhancers)
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def __make_power_2(img, base, method=Image.BICUBIC):
ow, oh = img.size
h = int(round(oh / base) * base)
w = int(round(ow / base) * base)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
return image_numpy
image_numpy = image_tensor.cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
image_numpy = image_numpy[:,:,0]
return image_numpy.astype(imtype)