Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2022 Pablo Pernías MIT License | |
| # Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim | |
| import math | |
| from dataclasses import dataclass | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import SchedulerMixin | |
| class DDPMWuerstchenSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's step function output. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class DDPMWuerstchenScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and | |
| Langevin dynamics sampling. | |
| [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
| function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
| [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
| [`~SchedulerMixin.from_pretrained`] functions. | |
| For more details, see the original paper: https://arxiv.org/abs/2006.11239 | |
| Args: | |
| scaler (`float`): .... | |
| s (`float`): .... | |
| """ | |
| def __init__( | |
| self, | |
| scaler: float = 1.0, | |
| s: float = 0.008, | |
| ): | |
| self.scaler = scaler | |
| self.s = torch.tensor([s]) | |
| self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| def _alpha_cumprod(self, t, device): | |
| if self.scaler > 1: | |
| t = 1 - (1 - t) ** self.scaler | |
| elif self.scaler < 1: | |
| t = t**self.scaler | |
| alpha_cumprod = torch.cos( | |
| (t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5 | |
| ) ** 2 / self._init_alpha_cumprod.to(device) | |
| return alpha_cumprod.clamp(0.0001, 0.9999) | |
| def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): input sample | |
| timestep (`int`, optional): current timestep | |
| Returns: | |
| `torch.FloatTensor`: scaled input sample | |
| """ | |
| return sample | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int = None, | |
| timesteps: Optional[List[int]] = None, | |
| device: Union[str, torch.device] = None, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
| Args: | |
| num_inference_steps (`Dict[float, int]`): | |
| the number of diffusion steps used when generating samples with a pre-trained model. If passed, then | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, optional): | |
| the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10} | |
| """ | |
| if timesteps is None: | |
| timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device) | |
| if not isinstance(timesteps, torch.Tensor): | |
| timesteps = torch.Tensor(timesteps).to(device) | |
| self.timesteps = timesteps | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| generator=None, | |
| return_dict: bool = True, | |
| ) -> Union[DDPMWuerstchenSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. | |
| timestep (`int`): current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| current instance of sample being created by diffusion process. | |
| generator: random number generator. | |
| return_dict (`bool`): option for returning tuple rather than DDPMWuerstchenSchedulerOutput class | |
| Returns: | |
| [`DDPMWuerstchenSchedulerOutput`] or `tuple`: [`DDPMWuerstchenSchedulerOutput`] if `return_dict` is True, | |
| otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
| """ | |
| dtype = model_output.dtype | |
| device = model_output.device | |
| t = timestep | |
| prev_t = self.previous_timestep(t) | |
| alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]]) | |
| alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) | |
| alpha = alpha_cumprod / alpha_cumprod_prev | |
| mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt()) | |
| std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) | |
| std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise | |
| pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) | |
| if not return_dict: | |
| return (pred.to(dtype),) | |
| return DDPMWuerstchenSchedulerOutput(prev_sample=pred.to(dtype)) | |
| def add_noise( | |
| self, | |
| original_samples: torch.FloatTensor, | |
| noise: torch.FloatTensor, | |
| timesteps: torch.FloatTensor, | |
| ) -> torch.FloatTensor: | |
| device = original_samples.device | |
| dtype = original_samples.dtype | |
| alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view( | |
| timesteps.size(0), *[1 for _ in original_samples.shape[1:]] | |
| ) | |
| noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise | |
| return noisy_samples.to(dtype=dtype) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |
| def previous_timestep(self, timestep): | |
| index = (self.timesteps - timestep[0]).abs().argmin().item() | |
| prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0]) | |
| return prev_t | |