Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from collections import OrderedDict | |
| from ..configuration_utils import ConfigMixin | |
| from ..utils import DIFFUSERS_CACHE | |
| from .controlnet import ( | |
| StableDiffusionControlNetImg2ImgPipeline, | |
| StableDiffusionControlNetInpaintPipeline, | |
| StableDiffusionControlNetPipeline, | |
| StableDiffusionXLControlNetImg2ImgPipeline, | |
| StableDiffusionXLControlNetPipeline, | |
| ) | |
| from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline | |
| from .kandinsky import ( | |
| KandinskyCombinedPipeline, | |
| KandinskyImg2ImgCombinedPipeline, | |
| KandinskyImg2ImgPipeline, | |
| KandinskyInpaintCombinedPipeline, | |
| KandinskyInpaintPipeline, | |
| KandinskyPipeline, | |
| ) | |
| from .kandinsky2_2 import ( | |
| KandinskyV22CombinedPipeline, | |
| KandinskyV22Img2ImgCombinedPipeline, | |
| KandinskyV22Img2ImgPipeline, | |
| KandinskyV22InpaintCombinedPipeline, | |
| KandinskyV22InpaintPipeline, | |
| KandinskyV22Pipeline, | |
| ) | |
| from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline | |
| from .pixart_alpha import PixArtAlphaPipeline | |
| from .stable_diffusion import ( | |
| StableDiffusionImg2ImgPipeline, | |
| StableDiffusionInpaintPipeline, | |
| StableDiffusionPipeline, | |
| ) | |
| from .stable_diffusion_xl import ( | |
| StableDiffusionXLImg2ImgPipeline, | |
| StableDiffusionXLInpaintPipeline, | |
| StableDiffusionXLPipeline, | |
| ) | |
| from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline | |
| AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("stable-diffusion", StableDiffusionPipeline), | |
| ("stable-diffusion-xl", StableDiffusionXLPipeline), | |
| ("if", IFPipeline), | |
| ("kandinsky", KandinskyCombinedPipeline), | |
| ("kandinsky22", KandinskyV22CombinedPipeline), | |
| ("stable-diffusion-controlnet", StableDiffusionControlNetPipeline), | |
| ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline), | |
| ("wuerstchen", WuerstchenCombinedPipeline), | |
| ("lcm", LatentConsistencyModelPipeline), | |
| ("pixart", PixArtAlphaPipeline), | |
| ] | |
| ) | |
| AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("stable-diffusion", StableDiffusionImg2ImgPipeline), | |
| ("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline), | |
| ("if", IFImg2ImgPipeline), | |
| ("kandinsky", KandinskyImg2ImgCombinedPipeline), | |
| ("kandinsky22", KandinskyV22Img2ImgCombinedPipeline), | |
| ("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline), | |
| ("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline), | |
| ("lcm", LatentConsistencyModelImg2ImgPipeline), | |
| ] | |
| ) | |
| AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("stable-diffusion", StableDiffusionInpaintPipeline), | |
| ("stable-diffusion-xl", StableDiffusionXLInpaintPipeline), | |
| ("if", IFInpaintingPipeline), | |
| ("kandinsky", KandinskyInpaintCombinedPipeline), | |
| ("kandinsky22", KandinskyV22InpaintCombinedPipeline), | |
| ("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline), | |
| ] | |
| ) | |
| _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("kandinsky", KandinskyPipeline), | |
| ("kandinsky22", KandinskyV22Pipeline), | |
| ("wuerstchen", WuerstchenDecoderPipeline), | |
| ] | |
| ) | |
| _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("kandinsky", KandinskyImg2ImgPipeline), | |
| ("kandinsky22", KandinskyV22Img2ImgPipeline), | |
| ] | |
| ) | |
| _AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict( | |
| [ | |
| ("kandinsky", KandinskyInpaintPipeline), | |
| ("kandinsky22", KandinskyV22InpaintPipeline), | |
| ] | |
| ) | |
| SUPPORTED_TASKS_MAPPINGS = [ | |
| AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
| AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
| AUTO_INPAINT_PIPELINES_MAPPING, | |
| _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING, | |
| _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING, | |
| _AUTO_INPAINT_DECODER_PIPELINES_MAPPING, | |
| ] | |
| def _get_connected_pipeline(pipeline_cls): | |
| # for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder | |
| if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values(): | |
| return _get_task_class( | |
| AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False | |
| ) | |
| if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values(): | |
| return _get_task_class( | |
| AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False | |
| ) | |
| if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values(): | |
| return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False) | |
| def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True): | |
| def get_model(pipeline_class_name): | |
| for task_mapping in SUPPORTED_TASKS_MAPPINGS: | |
| for model_name, pipeline in task_mapping.items(): | |
| if pipeline.__name__ == pipeline_class_name: | |
| return model_name | |
| model_name = get_model(pipeline_class_name) | |
| if model_name is not None: | |
| task_class = mapping.get(model_name, None) | |
| if task_class is not None: | |
| return task_class | |
| if throw_error_if_not_exist: | |
| raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}") | |
| def _get_signature_keys(obj): | |
| parameters = inspect.signature(obj.__init__).parameters | |
| required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} | |
| optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) | |
| expected_modules = set(required_parameters.keys()) - {"self"} | |
| return expected_modules, optional_parameters | |
| class AutoPipelineForText2Image(ConfigMixin): | |
| r""" | |
| [`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The | |
| specific underlying pipeline class is automatically selected from either the | |
| [`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods. | |
| This class cannot be instantiated using `__init__()` (throws an error). | |
| Class attributes: | |
| - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
| diffusion pipeline's components. | |
| """ | |
| config_name = "model_index.json" | |
| def __init__(self, *args, **kwargs): | |
| raise EnvironmentError( | |
| f"{self.__class__.__name__} is designed to be instantiated " | |
| f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
| f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
| ) | |
| def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
| r""" | |
| Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight. | |
| The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
| 1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
| config object | |
| 2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class | |
| name. | |
| If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| If you get the error message below, you need to finetune the weights for your downstream task: | |
| ``` | |
| Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
| - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
| You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
| ``` | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
| hosted on the Hub. | |
| - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
| saved using | |
| [`~DiffusionPipeline.save_pretrained`]. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
| dtype is automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info(`bool`, *optional*, defaults to `False`): | |
| Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| custom_revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
| `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
| custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
| A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
| parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
| same device. | |
| Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
| more information about each option see [designing a device | |
| map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
| max_memory (`Dict`, *optional*): | |
| A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
| each GPU and the available CPU RAM if unset. | |
| offload_folder (`str` or `os.PathLike`, *optional*): | |
| The path to offload weights if device_map contains the value `"disk"`. | |
| offload_state_dict (`bool`, *optional*): | |
| If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
| the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
| when there is some disk offload. | |
| low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
| Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
| tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
| Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
| argument to `True` will raise an error. | |
| use_safetensors (`bool`, *optional*, defaults to `None`): | |
| If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
| safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
| weights. If set to `False`, safetensors weights are not loaded. | |
| kwargs (remaining dictionary of keyword arguments, *optional*): | |
| Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
| class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
| below for more information. | |
| variant (`str`, *optional*): | |
| Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
| loading `from_flax`. | |
| <Tip> | |
| To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
| `huggingface-cli login`. | |
| </Tip> | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForText2Image | |
| >>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| >>> image = pipeline(prompt).images[0] | |
| ``` | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| revision = kwargs.pop("revision", None) | |
| load_config_kwargs = { | |
| "cache_dir": cache_dir, | |
| "force_download": force_download, | |
| "resume_download": resume_download, | |
| "proxies": proxies, | |
| "use_auth_token": use_auth_token, | |
| "local_files_only": local_files_only, | |
| "revision": revision, | |
| } | |
| config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
| orig_class_name = config["_class_name"] | |
| if "controlnet" in kwargs: | |
| orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
| text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name) | |
| kwargs = {**load_config_kwargs, **kwargs} | |
| return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
| def from_pipe(cls, pipeline, **kwargs): | |
| r""" | |
| Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
| The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image | |
| pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
| All the modules the pipeline contains will be used to initialize the new pipeline without reallocating | |
| additional memoery. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| Parameters: | |
| pipeline (`DiffusionPipeline`): | |
| an instantiated `DiffusionPipeline` object | |
| ```py | |
| >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image | |
| >>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained( | |
| ... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False | |
| ... ) | |
| >>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i) | |
| >>> image = pipe_t2i(prompt).images[0] | |
| ``` | |
| """ | |
| original_config = dict(pipeline.config) | |
| original_cls_name = pipeline.__class__.__name__ | |
| # derive the pipeline class to instantiate | |
| text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name) | |
| if "controlnet" in kwargs: | |
| if kwargs["controlnet"] is not None: | |
| text_2_image_cls = _get_task_class( | |
| AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
| text_2_image_cls.__name__.replace("ControlNet", "").replace("Pipeline", "ControlNetPipeline"), | |
| ) | |
| else: | |
| text_2_image_cls = _get_task_class( | |
| AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
| text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"), | |
| ) | |
| # define expected module and optional kwargs given the pipeline signature | |
| expected_modules, optional_kwargs = _get_signature_keys(text_2_image_cls) | |
| pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
| # allow users pass modules in `kwargs` to override the original pipeline's components | |
| passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
| original_class_obj = { | |
| k: pipeline.components[k] | |
| for k, v in pipeline.components.items() | |
| if k in expected_modules and k not in passed_class_obj | |
| } | |
| # allow users pass optional kwargs to override the original pipelines config attribute | |
| passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
| original_pipe_kwargs = { | |
| k: original_config[k] | |
| for k, v in original_config.items() | |
| if k in optional_kwargs and k not in passed_pipe_kwargs | |
| } | |
| # config that were not expected by original pipeline is stored as private attribute | |
| # we will pass them as optional arguments if they can be accepted by the pipeline | |
| additional_pipe_kwargs = [ | |
| k[1:] | |
| for k in original_config.keys() | |
| if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
| ] | |
| for k in additional_pipe_kwargs: | |
| original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
| text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
| # store unused config as private attribute | |
| unused_original_config = { | |
| f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
| for k, v in original_config.items() | |
| if k not in text_2_image_kwargs | |
| } | |
| missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys()) | |
| if len(missing_modules) > 0: | |
| raise ValueError( | |
| f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
| ) | |
| model = text_2_image_cls(**text_2_image_kwargs) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| model.register_to_config(**unused_original_config) | |
| return model | |
| class AutoPipelineForImage2Image(ConfigMixin): | |
| r""" | |
| [`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The | |
| specific underlying pipeline class is automatically selected from either the | |
| [`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods. | |
| This class cannot be instantiated using `__init__()` (throws an error). | |
| Class attributes: | |
| - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
| diffusion pipeline's components. | |
| """ | |
| config_name = "model_index.json" | |
| def __init__(self, *args, **kwargs): | |
| raise EnvironmentError( | |
| f"{self.__class__.__name__} is designed to be instantiated " | |
| f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
| f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
| ) | |
| def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
| r""" | |
| Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight. | |
| The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
| 1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
| config object | |
| 2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class | |
| name. | |
| If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`] | |
| object. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| If you get the error message below, you need to finetune the weights for your downstream task: | |
| ``` | |
| Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
| - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
| You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
| ``` | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
| hosted on the Hub. | |
| - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
| saved using | |
| [`~DiffusionPipeline.save_pretrained`]. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
| dtype is automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info(`bool`, *optional*, defaults to `False`): | |
| Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| custom_revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
| `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
| custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
| A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
| parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
| same device. | |
| Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
| more information about each option see [designing a device | |
| map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
| max_memory (`Dict`, *optional*): | |
| A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
| each GPU and the available CPU RAM if unset. | |
| offload_folder (`str` or `os.PathLike`, *optional*): | |
| The path to offload weights if device_map contains the value `"disk"`. | |
| offload_state_dict (`bool`, *optional*): | |
| If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
| the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
| when there is some disk offload. | |
| low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
| Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
| tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
| Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
| argument to `True` will raise an error. | |
| use_safetensors (`bool`, *optional*, defaults to `None`): | |
| If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
| safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
| weights. If set to `False`, safetensors weights are not loaded. | |
| kwargs (remaining dictionary of keyword arguments, *optional*): | |
| Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
| class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
| below for more information. | |
| variant (`str`, *optional*): | |
| Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
| loading `from_flax`. | |
| <Tip> | |
| To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
| `huggingface-cli login`. | |
| </Tip> | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForImage2Image | |
| >>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| >>> image = pipeline(prompt, image).images[0] | |
| ``` | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| revision = kwargs.pop("revision", None) | |
| load_config_kwargs = { | |
| "cache_dir": cache_dir, | |
| "force_download": force_download, | |
| "resume_download": resume_download, | |
| "proxies": proxies, | |
| "use_auth_token": use_auth_token, | |
| "local_files_only": local_files_only, | |
| "revision": revision, | |
| } | |
| config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
| orig_class_name = config["_class_name"] | |
| if "controlnet" in kwargs: | |
| orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
| image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name) | |
| kwargs = {**load_config_kwargs, **kwargs} | |
| return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
| def from_pipe(cls, pipeline, **kwargs): | |
| r""" | |
| Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
| The from_pipe() method takes care of returning the correct pipeline class instance by finding the | |
| image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
| All the modules the pipeline contains will be used to initialize the new pipeline without reallocating | |
| additional memoery. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| Parameters: | |
| pipeline (`DiffusionPipeline`): | |
| an instantiated `DiffusionPipeline` object | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image | |
| >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained( | |
| ... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False | |
| ... ) | |
| >>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i) | |
| >>> image = pipe_i2i(prompt, image).images[0] | |
| ``` | |
| """ | |
| original_config = dict(pipeline.config) | |
| original_cls_name = pipeline.__class__.__name__ | |
| # derive the pipeline class to instantiate | |
| image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name) | |
| if "controlnet" in kwargs: | |
| if kwargs["controlnet"] is not None: | |
| image_2_image_cls = _get_task_class( | |
| AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
| image_2_image_cls.__name__.replace("ControlNet", "").replace( | |
| "Img2ImgPipeline", "ControlNetImg2ImgPipeline" | |
| ), | |
| ) | |
| else: | |
| image_2_image_cls = _get_task_class( | |
| AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
| image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"), | |
| ) | |
| # define expected module and optional kwargs given the pipeline signature | |
| expected_modules, optional_kwargs = _get_signature_keys(image_2_image_cls) | |
| pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
| # allow users pass modules in `kwargs` to override the original pipeline's components | |
| passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
| original_class_obj = { | |
| k: pipeline.components[k] | |
| for k, v in pipeline.components.items() | |
| if k in expected_modules and k not in passed_class_obj | |
| } | |
| # allow users pass optional kwargs to override the original pipelines config attribute | |
| passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
| original_pipe_kwargs = { | |
| k: original_config[k] | |
| for k, v in original_config.items() | |
| if k in optional_kwargs and k not in passed_pipe_kwargs | |
| } | |
| # config attribute that were not expected by original pipeline is stored as its private attribute | |
| # we will pass them as optional arguments if they can be accepted by the pipeline | |
| additional_pipe_kwargs = [ | |
| k[1:] | |
| for k in original_config.keys() | |
| if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
| ] | |
| for k in additional_pipe_kwargs: | |
| original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
| image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
| # store unused config as private attribute | |
| unused_original_config = { | |
| f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
| for k, v in original_config.items() | |
| if k not in image_2_image_kwargs | |
| } | |
| missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys()) | |
| if len(missing_modules) > 0: | |
| raise ValueError( | |
| f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
| ) | |
| model = image_2_image_cls(**image_2_image_kwargs) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| model.register_to_config(**unused_original_config) | |
| return model | |
| class AutoPipelineForInpainting(ConfigMixin): | |
| r""" | |
| [`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The | |
| specific underlying pipeline class is automatically selected from either the | |
| [`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods. | |
| This class cannot be instantiated using `__init__()` (throws an error). | |
| Class attributes: | |
| - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
| diffusion pipeline's components. | |
| """ | |
| config_name = "model_index.json" | |
| def __init__(self, *args, **kwargs): | |
| raise EnvironmentError( | |
| f"{self.__class__.__name__} is designed to be instantiated " | |
| f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
| f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
| ) | |
| def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
| r""" | |
| Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight. | |
| The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
| 1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
| config object | |
| 2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
| If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`] | |
| object. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| If you get the error message below, you need to finetune the weights for your downstream task: | |
| ``` | |
| Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
| - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
| You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
| ``` | |
| Parameters: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
| Can be either: | |
| - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
| hosted on the Hub. | |
| - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
| saved using | |
| [`~DiffusionPipeline.save_pretrained`]. | |
| torch_dtype (`str` or `torch.dtype`, *optional*): | |
| Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
| dtype is automatically derived from the model's weights. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
| cached versions if they exist. | |
| cache_dir (`Union[str, os.PathLike]`, *optional*): | |
| Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
| is not used. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
| incompletely downloaded files are deleted. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| output_loading_info(`bool`, *optional*, defaults to `False`): | |
| Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
| won't be downloaded from the Hub. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
| `diffusers-cli login` (stored in `~/.huggingface`) is used. | |
| revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
| allowed by Git. | |
| custom_revision (`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
| `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
| custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
| mirror (`str`, *optional*): | |
| Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
| guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
| information. | |
| device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
| A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
| parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
| same device. | |
| Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
| more information about each option see [designing a device | |
| map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
| max_memory (`Dict`, *optional*): | |
| A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
| each GPU and the available CPU RAM if unset. | |
| offload_folder (`str` or `os.PathLike`, *optional*): | |
| The path to offload weights if device_map contains the value `"disk"`. | |
| offload_state_dict (`bool`, *optional*): | |
| If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
| the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
| when there is some disk offload. | |
| low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
| Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
| tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
| Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
| argument to `True` will raise an error. | |
| use_safetensors (`bool`, *optional*, defaults to `None`): | |
| If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
| safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
| weights. If set to `False`, safetensors weights are not loaded. | |
| kwargs (remaining dictionary of keyword arguments, *optional*): | |
| Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
| class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
| below for more information. | |
| variant (`str`, *optional*): | |
| Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
| loading `from_flax`. | |
| <Tip> | |
| To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
| `huggingface-cli login`. | |
| </Tip> | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForInpainting | |
| >>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5") | |
| >>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0] | |
| ``` | |
| """ | |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
| force_download = kwargs.pop("force_download", False) | |
| resume_download = kwargs.pop("resume_download", False) | |
| proxies = kwargs.pop("proxies", None) | |
| use_auth_token = kwargs.pop("use_auth_token", None) | |
| local_files_only = kwargs.pop("local_files_only", False) | |
| revision = kwargs.pop("revision", None) | |
| load_config_kwargs = { | |
| "cache_dir": cache_dir, | |
| "force_download": force_download, | |
| "resume_download": resume_download, | |
| "proxies": proxies, | |
| "use_auth_token": use_auth_token, | |
| "local_files_only": local_files_only, | |
| "revision": revision, | |
| } | |
| config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
| orig_class_name = config["_class_name"] | |
| if "controlnet" in kwargs: | |
| orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
| inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name) | |
| kwargs = {**load_config_kwargs, **kwargs} | |
| return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
| def from_pipe(cls, pipeline, **kwargs): | |
| r""" | |
| Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
| The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting | |
| pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
| All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating | |
| additional memoery. | |
| The pipeline is set in evaluation mode (`model.eval()`) by default. | |
| Parameters: | |
| pipeline (`DiffusionPipeline`): | |
| an instantiated `DiffusionPipeline` object | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting | |
| >>> pipe_t2i = AutoPipelineForText2Image.from_pretrained( | |
| ... "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False | |
| ... ) | |
| >>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i) | |
| >>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0] | |
| ``` | |
| """ | |
| original_config = dict(pipeline.config) | |
| original_cls_name = pipeline.__class__.__name__ | |
| # derive the pipeline class to instantiate | |
| inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name) | |
| if "controlnet" in kwargs: | |
| if kwargs["controlnet"] is not None: | |
| inpainting_cls = _get_task_class( | |
| AUTO_INPAINT_PIPELINES_MAPPING, | |
| inpainting_cls.__name__.replace("ControlNet", "").replace( | |
| "InpaintPipeline", "ControlNetInpaintPipeline" | |
| ), | |
| ) | |
| else: | |
| inpainting_cls = _get_task_class( | |
| AUTO_INPAINT_PIPELINES_MAPPING, | |
| inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"), | |
| ) | |
| # define expected module and optional kwargs given the pipeline signature | |
| expected_modules, optional_kwargs = _get_signature_keys(inpainting_cls) | |
| pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
| # allow users pass modules in `kwargs` to override the original pipeline's components | |
| passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
| original_class_obj = { | |
| k: pipeline.components[k] | |
| for k, v in pipeline.components.items() | |
| if k in expected_modules and k not in passed_class_obj | |
| } | |
| # allow users pass optional kwargs to override the original pipelines config attribute | |
| passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
| original_pipe_kwargs = { | |
| k: original_config[k] | |
| for k, v in original_config.items() | |
| if k in optional_kwargs and k not in passed_pipe_kwargs | |
| } | |
| # config that were not expected by original pipeline is stored as private attribute | |
| # we will pass them as optional arguments if they can be accepted by the pipeline | |
| additional_pipe_kwargs = [ | |
| k[1:] | |
| for k in original_config.keys() | |
| if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
| ] | |
| for k in additional_pipe_kwargs: | |
| original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
| inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
| # store unused config as private attribute | |
| unused_original_config = { | |
| f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
| for k, v in original_config.items() | |
| if k not in inpainting_kwargs | |
| } | |
| missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys()) | |
| if len(missing_modules) > 0: | |
| raise ValueError( | |
| f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
| ) | |
| model = inpainting_cls(**inpainting_kwargs) | |
| model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
| model.register_to_config(**unused_original_config) | |
| return model | |