Spaces:
Runtime error
Runtime error
| import inspect, math | |
| from typing import Callable, List, Optional, Union | |
| from dataclasses import dataclass | |
| import PIL | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| import kornia | |
| import torch.distributed as dist | |
| from tqdm import tqdm | |
| from diffusers.utils import is_accelerate_available | |
| from packaging import version | |
| from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection,CLIPFeatureExtractor | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers import DiffusionPipeline | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import deprecate, logging, BaseOutput | |
| from einops import rearrange | |
| from ref_encoder.latent_controlnet import ControlNetModel | |
| from ref_encoder.reference_control import ReferenceAttentionControl | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin | |
| from diffusers.models.modeling_utils import ModelMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CCProjection(ModelMixin, ConfigMixin): | |
| def __init__(self, in_channel=772, out_channel=768): | |
| super().__init__() | |
| self.in_channel = in_channel | |
| self.out_channel = out_channel | |
| self.projection = torch.nn.Linear(in_channel, out_channel) | |
| def forward(self, x): | |
| return self.projection(x) | |
| class PipelineOutput(BaseOutput): | |
| samples: Union[torch.Tensor, np.ndarray] | |
| class Hair3dPipeline(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetModel, | |
| # cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| # cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| style_fidelity=style_fidelity, | |
| mode='write', fusion_blocks='full') | |
| reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| style_fidelity=style_fidelity, | |
| fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| # prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| ref_latents_input = ref_image_latents | |
| reference_encoder( | |
| ref_latents_input, | |
| t, | |
| # encoder_hidden_states=prompt_embeds, | |
| encoder_hidden_states=text_embeddings, | |
| return_dict=False, | |
| ) | |
| reference_control_reader.update(reference_control_writer) | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # clean the reader | |
| reference_control_reader.clear() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| reference_control_writer.clear() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |
| class Hair3dPipeline_controlnet_simple(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetModel, | |
| cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| #pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| # pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| # pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| prompt_embeds = img_prompt_embeds | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| # reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| # style_fidelity=style_fidelity, | |
| # mode='write', fusion_blocks='full') | |
| # reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| # style_fidelity=style_fidelity, | |
| # fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| # ref_latents_input = ref_image_latents | |
| # reference_encoder( | |
| # ref_latents_input, | |
| # t, | |
| # encoder_hidden_states=text_embeddings, | |
| # return_dict=False, | |
| # ) | |
| # reference_control_reader.update(reference_control_writer) | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # clean the reader | |
| # reference_control_reader.clear() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| #reference_control_writer.clear() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |
| class Hair3dPipeline_controlnet(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetModel, | |
| cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| #pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| # pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| # pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| prompt_embeds = img_prompt_embeds | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| condition = condition/self.vae.config.scaling_factor | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| style_fidelity=style_fidelity, | |
| mode='write', fusion_blocks='full') | |
| reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| style_fidelity=style_fidelity, | |
| fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| ref_latents_input = ref_image_latents | |
| reference_encoder( | |
| ref_latents_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| return_dict=False, | |
| ) | |
| reference_control_reader.update(reference_control_writer) | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # clean the reader | |
| reference_control_reader.clear() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| reference_control_writer.clear() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |
| class Hair3dPipeline_hair_encoder(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| # controlnet: ControlNetModel, | |
| # cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| # controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| # cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| style_fidelity=style_fidelity, | |
| mode='write', fusion_blocks='full') | |
| reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| style_fidelity=style_fidelity, | |
| fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| # prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| ref_latents_input = ref_image_latents | |
| reference_encoder( | |
| ref_latents_input, | |
| t, | |
| # encoder_hidden_states=prompt_embeds, | |
| encoder_hidden_states=text_embeddings, | |
| return_dict=False, | |
| ) | |
| reference_control_reader.update(reference_control_writer) | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| #latent_model_input = torch.cat([latent_model_input, control], dim=1) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # clean the reader | |
| reference_control_reader.clear() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| reference_control_writer.clear() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |
| class Hair3dPipeline_controlnet_sv3d(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetModel, | |
| cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _get_add_time_ids( | |
| self, | |
| noise_aug_strength: torch.tensor, | |
| polars_rad: torch.tensor, | |
| azimuths_rad: torch.tensor, | |
| #dtype: torch.dtype, | |
| # batch_size: int, | |
| # num_videos_per_prompt: int, | |
| do_classifier_free_guidance: bool, | |
| ): | |
| cond_aug = noise_aug_strength.repeat(polars_rad.shape[0], 1) | |
| cond_aug = cond_aug.to(polars_rad.device) | |
| # polars_rad = torch.tensor(polars_rad, dtype=dtype) | |
| # azimuths_rad = torch.tensor(azimuths_rad, dtype=dtype) | |
| if do_classifier_free_guidance: | |
| cond_aug = torch.cat([cond_aug, cond_aug]) | |
| polars_rad = torch.cat([polars_rad, polars_rad]) | |
| azimuths_rad = torch.cat([azimuths_rad, azimuths_rad]) | |
| add_time_ids = [cond_aug, polars_rad, azimuths_rad] | |
| return add_time_ids | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| #pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| # pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| # pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| prompt_embeds = img_prompt_embeds | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| x = None, | |
| y = None, | |
| controlnet_ablation = False, | |
| hair_encoder_add_xy = True, | |
| controlnet_encoder_add_xy = True, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| style_fidelity=style_fidelity, | |
| mode='write', fusion_blocks='full') | |
| reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| style_fidelity=style_fidelity, | |
| fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| if controlnet_ablation: | |
| control = controlnet_condition | |
| control = torch.from_numpy(control).float().to(controlnet.dtype) / 127.5 - 1 | |
| control = rearrange(control, "h w c -> c h w").to(device)[None, :] | |
| else: | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| noise_aug_strength = 1e-5 | |
| noise_aug_strength = torch.tensor(noise_aug_strength, dtype=torch.float32).unsqueeze(0) | |
| noise_aug_strength = noise_aug_strength.to(device) | |
| if (x is not None) and (y is not None): | |
| x = x.to(device) | |
| y = y.to(device) | |
| add_time_ids = self._get_add_time_ids(noise_aug_strength, x, y, do_classifier_free_guidance) | |
| else: | |
| add_time_ids = None | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| ref_latents_input = ref_image_latents | |
| if hair_encoder_add_xy: | |
| reference_encoder( | |
| ref_latents_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| return_dict=False, | |
| # add_time_ids = add_time_ids, | |
| ) | |
| else: | |
| reference_encoder( | |
| ref_latents_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| return_dict=False, | |
| add_time_ids = None, | |
| ) | |
| # reference_control_reader.update(reference_control_writer) | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| if controlnet_encoder_add_xy: | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| add_time_ids = add_time_ids, | |
| ) | |
| else: | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| add_time_ids = None, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # clean the reader | |
| # reference_control_reader.clear() | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| # reference_control_writer.clear() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |
| class Hair3dPipeline_controlnet_only_sv3d(DiffusionPipeline): | |
| _optional_components = [] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetModel, | |
| cc_projection: CCProjection, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPFeatureExtractor, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| cc_projection=cc_projection, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| def enable_vae_slicing(self): | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| self.vae.disable_slicing() | |
| def enable_sequential_cpu_offload(self, gpu_id=0): | |
| if is_accelerate_available(): | |
| from accelerate import cpu_offload | |
| else: | |
| raise ImportError("Please install accelerate via `pip install accelerate`") | |
| device = torch.device(f"cuda:{gpu_id}") | |
| for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: | |
| if cpu_offloaded_model is not None: | |
| cpu_offload(cpu_offloaded_model, device) | |
| def _execution_device(self): | |
| if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): | |
| return self.device | |
| for module in self.unet.modules(): | |
| if ( | |
| hasattr(module, "_hf_hook") | |
| and hasattr(module._hf_hook, "execution_device") | |
| and module._hf_hook.execution_device is not None | |
| ): | |
| return torch.device(module._hf_hook.execution_device) | |
| return self.device | |
| def _get_add_time_ids( | |
| self, | |
| noise_aug_strength: torch.tensor, | |
| polars_rad: torch.tensor, | |
| azimuths_rad: torch.tensor, | |
| #dtype: torch.dtype, | |
| # batch_size: int, | |
| # num_videos_per_prompt: int, | |
| do_classifier_free_guidance: bool, | |
| ): | |
| cond_aug = noise_aug_strength.repeat(polars_rad.shape[0], 1) | |
| cond_aug = cond_aug.to(polars_rad.device) | |
| # polars_rad = torch.tensor(polars_rad, dtype=dtype) | |
| # azimuths_rad = torch.tensor(azimuths_rad, dtype=dtype) | |
| if do_classifier_free_guidance: | |
| cond_aug = torch.cat([cond_aug, cond_aug]) | |
| polars_rad = torch.cat([polars_rad, polars_rad]) | |
| azimuths_rad = torch.cat([azimuths_rad, azimuths_rad]) | |
| add_time_ids = [cond_aug, polars_rad, azimuths_rad] | |
| return add_time_ids | |
| def CLIP_preprocess(self, x): | |
| dtype = x.dtype | |
| # following openai's implementation | |
| # TODO HF OpenAI CLIP preprocessing issue https://github.com/huggingface/transformers/issues/22505#issuecomment-1650170741 | |
| # follow openai preprocessing to keep exact same, input tensor [-1, 1], otherwise the preprocessing will be different, https://github.com/huggingface/transformers/pull/22608 | |
| if isinstance(x, torch.Tensor): | |
| if x.min() < -1.0 or x.max() > 1.0: | |
| raise ValueError("Expected input tensor to have values in the range [-1, 1]") | |
| x = kornia.geometry.resize(x.to(torch.float32), (224, 224), interpolation='bicubic', align_corners=True, antialias=False).to(dtype=dtype) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, torch.Tensor([0.48145466, 0.4578275, 0.40821073]), | |
| torch.Tensor([0.26862954, 0.26130258, 0.27577711])) | |
| return x | |
| # from image_variation | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| if isinstance(image, torch.Tensor): | |
| # Batch single image | |
| if image.ndim == 3: | |
| assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" | |
| image = image.unsqueeze(0) | |
| assert image.ndim == 4, "Image must have 4 dimensions" | |
| # Check image is in [-1, 1] | |
| if image.min() < -1 or image.max() > 1: | |
| raise ValueError("Image should be in [-1, 1] range") | |
| else: | |
| # preprocess image | |
| if isinstance(image, (PIL.Image.Image, np.ndarray)): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| image = image.to(device=device, dtype=dtype) | |
| image = self.CLIP_preprocess(image) | |
| # if not isinstance(image, torch.Tensor): | |
| # # 0-255 | |
| # print("Warning: image is processed by hf's preprocess, which is different from openai original's.") | |
| # image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image_embeddings = self.image_encoder(image).image_embeds.to(dtype=dtype) | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def _encode_pose(self, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.unet.parameters()).dtype | |
| if isinstance(pose, torch.Tensor): | |
| pose_embeddings = pose.unsqueeze(0).to(device=device, dtype=dtype) | |
| #pose_embeddings = pose_embeddings.unsqueeze(0).to(device=device, dtype=dtype) | |
| else: | |
| if isinstance(pose[0], list): | |
| pose = torch.Tensor(pose) | |
| else: | |
| pose = torch.Tensor([pose]) | |
| x, y, z = pose[:,0].unsqueeze(1), pose[:,1].unsqueeze(1), pose[:,2].unsqueeze(1) | |
| pose_embeddings = torch.cat([torch.deg2rad(x), | |
| torch.sin(torch.deg2rad(y)), | |
| torch.cos(torch.deg2rad(y)), | |
| z], dim=-1).unsqueeze(1).to(device=device, dtype=dtype) # B, 1, 4 | |
| # duplicate pose embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = pose_embeddings.shape | |
| # pose_embeddings = pose_embeddings.repeat(1, num_images_per_prompt, 1) | |
| # pose_embeddings = pose_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| negative_prompt_embeds = torch.zeros_like(pose_embeddings) | |
| pose_embeddings = torch.cat([negative_prompt_embeds, pose_embeddings]) | |
| return pose_embeddings | |
| def _encode_image_with_pose(self, image, pose, device, num_images_per_prompt, do_classifier_free_guidance): | |
| img_prompt_embeds = self._encode_image(image, device, num_images_per_prompt, False) | |
| pose_prompt_embeds = self._encode_pose(pose, device, num_images_per_prompt, False) | |
| prompt_embeds = torch.cat([img_prompt_embeds, pose_prompt_embeds], dim=-1) | |
| prompt_embeds = self.cc_projection(prompt_embeds) | |
| prompt_embeds = img_prompt_embeds | |
| # follow 0123, add negative prompt, after projection | |
| if do_classifier_free_guidance: | |
| negative_prompt = torch.zeros_like(prompt_embeds) | |
| prompt_embeds = torch.cat([negative_prompt, prompt_embeds]) | |
| return prompt_embeds | |
| def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): | |
| if isinstance(prompt, torch.Tensor): | |
| batch_size = prompt.shape[0] | |
| text_input_ids = prompt | |
| else: | |
| batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, | |
| untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| text_embeddings = self.text_encoder( | |
| text_input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| text_embeddings = text_embeddings[0] | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = text_embeddings.shape | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| uncond_embeddings = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| uncond_embeddings = uncond_embeddings[0] | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = uncond_embeddings.shape[1] | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def decode_latents(self, latents): | |
| latents = 1 / 0.18215 * latents | |
| image = self.vae.decode(latents).sample | |
| print("image", torch.max(image), torch.min(image)) | |
| image = (image / 2 + 0.5).clamp(0, 1).permute(0, 2, 3, 1) | |
| image = image.cpu().squeeze(0).float().numpy() | |
| return image | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs(self, prompt, height, width, callback_steps): | |
| if not isinstance(prompt, str) and not isinstance(prompt, list) and not isinstance(prompt, torch.Tensor): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i: i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, | |
| clip_length=16): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| rand_device = "cpu" if device.type == "mps" else device | |
| if isinstance(generator, list): | |
| latents = [ | |
| torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) | |
| for i in range(batch_size) | |
| ] | |
| latents = torch.cat(latents, dim=0).to(device) | |
| else: | |
| latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device) | |
| else: | |
| if latents.shape != shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| noise = latents.clone() | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents, noise | |
| def prepare_condition(self, condition, device, dtype, do_classifier_free_guidance): | |
| if isinstance(condition, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| condition = condition | |
| elif isinstance(condition, np.ndarray): | |
| # suppose input is [0, 255] | |
| condition = self.images2latents(condition, dtype).cuda() | |
| if do_classifier_free_guidance: | |
| condition_pad = torch.ones_like(condition) * -1 | |
| condition = torch.cat([condition_pad, condition]) | |
| return condition | |
| def images2latents(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def images2latents_new(self, images, dtype): | |
| """ | |
| Convert RGB image to VAE latents | |
| """ | |
| device = self._execution_device | |
| if isinstance(images, torch.Tensor): | |
| # suppose input is [-1, 1] | |
| images = images.to(dtype) | |
| if images.ndim == 3: | |
| images = images.unsqueeze(0) | |
| elif isinstance(images, np.ndarray): | |
| # suppose input is [0, 255] | |
| images = torch.from_numpy(images).float().to(dtype) / 255.0 | |
| images = rearrange(images, "h w c -> c h w").to(device)[None, :] | |
| latents = self.vae.encode(images)['latent_dist'].mean * self.vae.config.scaling_factor | |
| return latents | |
| def encode_single_image_latents(self, images, mask, dtype): | |
| device = self._execution_device | |
| images = torch.from_numpy(images).float().to(dtype) / 127.5 - 1 | |
| images = rearrange(images, "h w c -> c h w").to(device) | |
| latents = self.vae.encode(images[None, :])['latent_dist'].mean * 0.18215 | |
| images = images.unsqueeze(0) | |
| mask = torch.from_numpy(mask).float().to(dtype).to(device) / 255.0 | |
| if mask.ndim == 2: | |
| mask = mask[None, None, :] | |
| elif mask.ndim == 3: | |
| mask = mask[:, None, :, :] | |
| mask = F.interpolate(mask, size=latents.shape[-2:], mode='nearest') | |
| return latents, images, mask | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| controlnet_condition: list = None, | |
| controlnet_conditioning_scale: Optional[float] = 1.0, | |
| init_latents: Optional[torch.FloatTensor] = None, | |
| num_actual_inference_steps: Optional[int] = None, | |
| reference_encoder=None, | |
| ref_image=None, | |
| t2i=False, | |
| style_fidelity=1.0, | |
| prompt_img = None, | |
| poses = None, | |
| x = None, | |
| y = None, | |
| **kwargs, | |
| ): | |
| controlnet = self.controlnet | |
| # Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, height, width, callback_steps) | |
| # Define call parameters | |
| # batch_size = 1 if isinstance(prompt, str) else len(prompt) | |
| batch_size = 1 | |
| if latents is not None: | |
| batch_size = latents.shape[0] | |
| if isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # Encode input prompt | |
| if not isinstance(prompt, torch.Tensor): | |
| prompt = prompt if isinstance(prompt, list) else [prompt] * batch_size | |
| if negative_prompt is not None: | |
| negative_prompt = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] * batch_size | |
| text_embeddings = self._encode_prompt( | |
| prompt, device, do_classifier_free_guidance, negative_prompt | |
| ) | |
| text_embeddings = torch.cat([text_embeddings]) | |
| reference_control_writer = ReferenceAttentionControl(reference_encoder, do_classifier_free_guidance=True, | |
| style_fidelity=style_fidelity, | |
| mode='write', fusion_blocks='full') | |
| reference_control_reader = ReferenceAttentionControl(self.unet, do_classifier_free_guidance=True, mode='read', | |
| style_fidelity=style_fidelity, | |
| fusion_blocks='full') | |
| is_dist_initialized = kwargs.get("dist", False) | |
| rank = kwargs.get("rank", 0) | |
| # Prepare control_img | |
| control = self.prepare_condition( | |
| condition=controlnet_condition, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| ) | |
| # for b in range(control.size(0)): | |
| # max_value = torch.max(control[b]) | |
| # min_value = torch.min(control[b]) | |
| # control[b] = (control[b] - min_value) / (max_value - min_value) | |
| # Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.in_channels | |
| latents = self.prepare_latents( | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| text_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if isinstance(latents, tuple): | |
| latents, noise = latents | |
| latents_dtype = latents.dtype | |
| # Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # For img2img setting | |
| if num_actual_inference_steps is None: | |
| num_actual_inference_steps = num_inference_steps | |
| if isinstance(ref_image, str): | |
| ref_image_latents = self.images2latents(np.array(Image.open(ref_image).resize((width, height))), | |
| latents_dtype).cuda() | |
| elif isinstance(ref_image, np.ndarray): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| elif isinstance(ref_image, torch.Tensor): | |
| ref_image_latents = self.images2latents(ref_image, latents_dtype).cuda() | |
| ref_padding_latents = torch.ones_like(ref_image_latents) * -1 | |
| ref_image_latents = torch.cat([ref_padding_latents, ref_image_latents]) if do_classifier_free_guidance else ref_image_latents | |
| prompt_embeds = self._encode_image_with_pose(prompt_img, poses, device, 1, do_classifier_free_guidance) | |
| noise_aug_strength = 1e-5 | |
| noise_aug_strength = torch.tensor(noise_aug_strength, dtype=torch.float32).unsqueeze(0) | |
| noise_aug_strength = noise_aug_strength.to(device) | |
| if (x is not None) and (y is not None): | |
| x = x.to(device) | |
| y = y.to(device) | |
| add_time_ids = self._get_add_time_ids(noise_aug_strength, x, y, do_classifier_free_guidance) | |
| else: | |
| add_time_ids = None | |
| # Denoising loop | |
| for i, t in tqdm(enumerate(timesteps), total=len(timesteps), disable=(rank != 0)): | |
| if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
| continue | |
| # writer | |
| # prepare latents | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if t2i: | |
| pass | |
| else: | |
| # controlnet | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| controlnet_cond=control, | |
| return_dict=False, | |
| add_time_ids = add_time_ids, | |
| ) | |
| down_block_res_samples = [sample * controlnet_conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * controlnet_conditioning_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=text_embeddings, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| if is_dist_initialized: | |
| dist.broadcast(latents, 0) | |
| dist.barrier() | |
| samples = self.decode_latents(latents) | |
| if is_dist_initialized: | |
| dist.barrier() | |
| # Convert to tensor | |
| if output_type == "tensor": | |
| samples = torch.from_numpy(samples) | |
| if not return_dict: | |
| return samples | |
| return PipelineOutput(samples=samples) | |