Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput | |
| from ..utils.torch_utils import randn_tensor | |
| from .scheduling_utils import SchedulerMixin | |
| # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar | |
| def betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| max_beta=0.999, | |
| alpha_transform_type="cosine", | |
| ): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
| (1-beta) over time from t = [0,1]. | |
| Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
| to that part of the diffusion process. | |
| Args: | |
| num_diffusion_timesteps (`int`): the number of betas to produce. | |
| max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. | |
| Choose from `cosine` or `exp` | |
| Returns: | |
| betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | |
| """ | |
| if alpha_transform_type == "cosine": | |
| def alpha_bar_fn(t): | |
| return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 | |
| elif alpha_transform_type == "exp": | |
| def alpha_bar_fn(t): | |
| return math.exp(t * -12.0) | |
| else: | |
| raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) | |
| return torch.tensor(betas, dtype=torch.float32) | |
| class ConsistencyDecoderSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function. | |
| Args: | |
| prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| """ | |
| prev_sample: torch.FloatTensor | |
| class ConsistencyDecoderScheduler(SchedulerMixin, ConfigMixin): | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1024, | |
| sigma_data: float = 0.5, | |
| ): | |
| betas = betas_for_alpha_bar(num_train_timesteps) | |
| alphas = 1.0 - betas | |
| alphas_cumprod = torch.cumprod(alphas, dim=0) | |
| self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod) | |
| sigmas = torch.sqrt(1.0 / alphas_cumprod - 1) | |
| sqrt_recip_alphas_cumprod = torch.sqrt(1.0 / alphas_cumprod) | |
| self.c_skip = sqrt_recip_alphas_cumprod * sigma_data**2 / (sigmas**2 + sigma_data**2) | |
| self.c_out = sigmas * sigma_data / (sigmas**2 + sigma_data**2) ** 0.5 | |
| self.c_in = sqrt_recip_alphas_cumprod / (sigmas**2 + sigma_data**2) ** 0.5 | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: Optional[int] = None, | |
| device: Union[str, torch.device] = None, | |
| ): | |
| if num_inference_steps != 2: | |
| raise ValueError("Currently more than 2 inference steps are not supported.") | |
| self.timesteps = torch.tensor([1008, 512], dtype=torch.long, device=device) | |
| self.sqrt_alphas_cumprod = self.sqrt_alphas_cumprod.to(device) | |
| self.sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod.to(device) | |
| self.c_skip = self.c_skip.to(device) | |
| self.c_out = self.c_out.to(device) | |
| self.c_in = self.c_in.to(device) | |
| def init_noise_sigma(self): | |
| return self.sqrt_one_minus_alphas_cumprod[self.timesteps[0]] | |
| def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| timestep (`int`, *optional*): | |
| The current timestep in the diffusion chain. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| return sample * self.c_in[timestep] | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: Union[float, torch.FloatTensor], | |
| sample: torch.FloatTensor, | |
| generator: Optional[torch.Generator] = None, | |
| return_dict: bool = True, | |
| ) -> Union[ConsistencyDecoderSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from the learned diffusion model. | |
| timestep (`float`): | |
| The current timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| generator (`torch.Generator`, *optional*): | |
| A random number generator. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a | |
| [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, | |
| [`~schedulers.scheduling_consistency_models.ConsistencyDecoderSchedulerOutput`] is returned, otherwise | |
| a tuple is returned where the first element is the sample tensor. | |
| """ | |
| x_0 = self.c_out[timestep] * model_output + self.c_skip[timestep] * sample | |
| timestep_idx = torch.where(self.timesteps == timestep)[0] | |
| if timestep_idx == len(self.timesteps) - 1: | |
| prev_sample = x_0 | |
| else: | |
| noise = randn_tensor(x_0.shape, generator=generator, dtype=x_0.dtype, device=x_0.device) | |
| prev_sample = ( | |
| self.sqrt_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * x_0 | |
| + self.sqrt_one_minus_alphas_cumprod[self.timesteps[timestep_idx + 1]].to(x_0.dtype) * noise | |
| ) | |
| if not return_dict: | |
| return (prev_sample,) | |
| return ConsistencyDecoderSchedulerOutput(prev_sample=prev_sample) | |