Update app.py
Browse files
app.py
CHANGED
@@ -220,18 +220,10 @@ def ACE(file):
|
|
220 |
test_dict = {"text":test_sequences, 'structure':test_Structure_index}
|
221 |
print("=================================Structure prediction========================")
|
222 |
for i in tqdm(range(0, len(test_sequences))):
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
file.write(result.stdout)
|
228 |
-
stats = os.stat(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'))
|
229 |
-
if stats.st_size < 1024:
|
230 |
-
print(f"Download for {test_Structure_index[i]} failed due to empty file. Retrying...")
|
231 |
-
time.sleep(20)
|
232 |
-
continue
|
233 |
-
else:
|
234 |
-
break
|
235 |
test_data=MyDataset(test_dict)
|
236 |
test_dataloader=DataLoader(test_data,batch_size=batch_size,collate_fn=collate_fn,shuffle=False)
|
237 |
|
@@ -250,6 +242,8 @@ def ACE(file):
|
|
250 |
batchs = {k: v for k, v in batch.items()}
|
251 |
outputs = model(structure_fea, batchs, fingerprint)
|
252 |
probability = outputs[0].tolist()
|
|
|
|
|
253 |
train_argmax = np.argmax(outputs.cpu().detach().numpy(), axis=1)
|
254 |
for j in range(0,len(train_argmax)):
|
255 |
output = train_argmax[j]
|
|
|
220 |
test_dict = {"text":test_sequences, 'structure':test_Structure_index}
|
221 |
print("=================================Structure prediction========================")
|
222 |
for i in tqdm(range(0, len(test_sequences))):
|
223 |
+
command = ["curl", "-X", "POST", "-k", "--data", f"{test_sequences[i]}", "https://api.esmatlas.com/foldSequence/v1/pdb/"]
|
224 |
+
result = subprocess.run(command, capture_output=True, text=True)
|
225 |
+
with open(os.path.join(pdb_path, f'{test_Structure_index[i]}.pdb'), 'w') as file:
|
226 |
+
file.write(result.stdout)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
test_data=MyDataset(test_dict)
|
228 |
test_dataloader=DataLoader(test_data,batch_size=batch_size,collate_fn=collate_fn,shuffle=False)
|
229 |
|
|
|
242 |
batchs = {k: v for k, v in batch.items()}
|
243 |
outputs = model(structure_fea, batchs, fingerprint)
|
244 |
probability = outputs[0].tolist()
|
245 |
+
print(outputs)
|
246 |
+
print(probability)
|
247 |
train_argmax = np.argmax(outputs.cpu().detach().numpy(), axis=1)
|
248 |
for j in range(0,len(train_argmax)):
|
249 |
output = train_argmax[j]
|