Delete tools/restaurants/test.ipynb
Browse files- tools/restaurants/test.ipynb +0 -1152
tools/restaurants/test.ipynb
DELETED
@@ -1,1152 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 50,
|
6 |
-
"id": "1f939e73",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import pandas as pd\n",
|
11 |
-
"data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/restaurants/zomato.csv')"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 51,
|
17 |
-
"id": "876e4fff",
|
18 |
-
"metadata": {},
|
19 |
-
"outputs": [],
|
20 |
-
"source": [
|
21 |
-
"data_dict = data.to_dict(orient = 'split')"
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "code",
|
26 |
-
"execution_count": 52,
|
27 |
-
"id": "dbaee06c",
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [
|
30 |
-
{
|
31 |
-
"data": {
|
32 |
-
"text/plain": [
|
33 |
-
"['Restaurant ID',\n",
|
34 |
-
" 'Restaurant Name',\n",
|
35 |
-
" 'Country Code',\n",
|
36 |
-
" 'City',\n",
|
37 |
-
" 'Address',\n",
|
38 |
-
" 'Locality',\n",
|
39 |
-
" 'Locality Verbose',\n",
|
40 |
-
" 'Longitude',\n",
|
41 |
-
" 'Latitude',\n",
|
42 |
-
" 'Cuisines',\n",
|
43 |
-
" 'Average Cost for two',\n",
|
44 |
-
" 'Currency',\n",
|
45 |
-
" 'Has Table booking',\n",
|
46 |
-
" 'Has Online delivery',\n",
|
47 |
-
" 'Is delivering now',\n",
|
48 |
-
" 'Switch to order menu',\n",
|
49 |
-
" 'Price range',\n",
|
50 |
-
" 'Aggregate rating',\n",
|
51 |
-
" 'Rating color',\n",
|
52 |
-
" 'Rating text',\n",
|
53 |
-
" 'Votes']"
|
54 |
-
]
|
55 |
-
},
|
56 |
-
"execution_count": 52,
|
57 |
-
"metadata": {},
|
58 |
-
"output_type": "execute_result"
|
59 |
-
}
|
60 |
-
],
|
61 |
-
"source": [
|
62 |
-
"data_dict['columns']"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"cell_type": "code",
|
67 |
-
"execution_count": 53,
|
68 |
-
"id": "cb540128",
|
69 |
-
"metadata": {},
|
70 |
-
"outputs": [
|
71 |
-
{
|
72 |
-
"data": {
|
73 |
-
"text/plain": [
|
74 |
-
"9551"
|
75 |
-
]
|
76 |
-
},
|
77 |
-
"execution_count": 53,
|
78 |
-
"metadata": {},
|
79 |
-
"output_type": "execute_result"
|
80 |
-
}
|
81 |
-
],
|
82 |
-
"source": [
|
83 |
-
"len(data_dict['data'])"
|
84 |
-
]
|
85 |
-
},
|
86 |
-
{
|
87 |
-
"cell_type": "code",
|
88 |
-
"execution_count": 14,
|
89 |
-
"id": "ea9858c5",
|
90 |
-
"metadata": {},
|
91 |
-
"outputs": [
|
92 |
-
{
|
93 |
-
"data": {
|
94 |
-
"text/plain": [
|
95 |
-
"[6600970,\n",
|
96 |
-
" 'Pizza 礞 Bessa',\n",
|
97 |
-
" 30,\n",
|
98 |
-
" 'Bras韄lia',\n",
|
99 |
-
" 'SCS 214, Bloco C, Loja 40, Asa Sul, Bras韄lia',\n",
|
100 |
-
" 'Asa Sul',\n",
|
101 |
-
" 'Asa Sul, Bras韄lia',\n",
|
102 |
-
" -47.91566667,\n",
|
103 |
-
" -15.83116667,\n",
|
104 |
-
" 'Pizza',\n",
|
105 |
-
" 50,\n",
|
106 |
-
" 'Brazilian Real(R$)',\n",
|
107 |
-
" 'No',\n",
|
108 |
-
" 'No',\n",
|
109 |
-
" 'No',\n",
|
110 |
-
" 'No',\n",
|
111 |
-
" 2,\n",
|
112 |
-
" 3.2,\n",
|
113 |
-
" 'Orange',\n",
|
114 |
-
" 'Average',\n",
|
115 |
-
" 11]"
|
116 |
-
]
|
117 |
-
},
|
118 |
-
"execution_count": 14,
|
119 |
-
"metadata": {},
|
120 |
-
"output_type": "execute_result"
|
121 |
-
}
|
122 |
-
],
|
123 |
-
"source": [
|
124 |
-
"data_dict['data'][26]"
|
125 |
-
]
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"cell_type": "code",
|
129 |
-
"execution_count": 9,
|
130 |
-
"id": "e21af5d1",
|
131 |
-
"metadata": {},
|
132 |
-
"outputs": [],
|
133 |
-
"source": [
|
134 |
-
"flight = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/flights/clean_Flights_2022.csv')"
|
135 |
-
]
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"cell_type": "code",
|
139 |
-
"execution_count": 10,
|
140 |
-
"id": "966feef9",
|
141 |
-
"metadata": {},
|
142 |
-
"outputs": [],
|
143 |
-
"source": [
|
144 |
-
"flight = flight.to_dict(orient = 'split')"
|
145 |
-
]
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "code",
|
149 |
-
"execution_count": 93,
|
150 |
-
"id": "c5f81f43",
|
151 |
-
"metadata": {},
|
152 |
-
"outputs": [],
|
153 |
-
"source": [
|
154 |
-
"city_set = open('/home/xj/toolAugEnv/code/toolConstraint/database/background/citySet.txt','r').read().strip().split('\\n')"
|
155 |
-
]
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"cell_type": "code",
|
159 |
-
"execution_count": 94,
|
160 |
-
"id": "bfce5f56",
|
161 |
-
"metadata": {},
|
162 |
-
"outputs": [
|
163 |
-
{
|
164 |
-
"data": {
|
165 |
-
"text/plain": [
|
166 |
-
"['San Diego',\n",
|
167 |
-
" 'Pellston',\n",
|
168 |
-
" 'Buffalo',\n",
|
169 |
-
" 'Charlotte Amalie',\n",
|
170 |
-
" 'Flagstaff',\n",
|
171 |
-
" 'Evansville',\n",
|
172 |
-
" 'Hilo',\n",
|
173 |
-
" 'Twin Falls',\n",
|
174 |
-
" 'Newark',\n",
|
175 |
-
" 'State College',\n",
|
176 |
-
" 'Johnstown',\n",
|
177 |
-
" 'Charleston',\n",
|
178 |
-
" 'Montgomery',\n",
|
179 |
-
" 'Redding',\n",
|
180 |
-
" 'Lynchburg',\n",
|
181 |
-
" 'South Bend',\n",
|
182 |
-
" 'Sarasota',\n",
|
183 |
-
" 'Sioux Falls',\n",
|
184 |
-
" 'Paducah',\n",
|
185 |
-
" 'Kahului',\n",
|
186 |
-
" 'Atlantic City',\n",
|
187 |
-
" 'Bemidji',\n",
|
188 |
-
" 'Toledo',\n",
|
189 |
-
" 'Abilene',\n",
|
190 |
-
" 'Sacramento',\n",
|
191 |
-
" 'Amarillo',\n",
|
192 |
-
" 'Moline',\n",
|
193 |
-
" 'Hilton Head',\n",
|
194 |
-
" 'Manhattan',\n",
|
195 |
-
" 'Minneapolis',\n",
|
196 |
-
" 'Fort Myers',\n",
|
197 |
-
" 'Roswell',\n",
|
198 |
-
" 'Harlingen',\n",
|
199 |
-
" 'Seattle',\n",
|
200 |
-
" 'Manchester',\n",
|
201 |
-
" 'Gulfport',\n",
|
202 |
-
" 'Gainesville',\n",
|
203 |
-
" 'Pago Pago',\n",
|
204 |
-
" 'Wrangell',\n",
|
205 |
-
" 'Augusta',\n",
|
206 |
-
" 'Waterloo',\n",
|
207 |
-
" 'Yuma',\n",
|
208 |
-
" 'Saipan',\n",
|
209 |
-
" 'Christiansted',\n",
|
210 |
-
" 'North Bend',\n",
|
211 |
-
" 'Richmond',\n",
|
212 |
-
" 'Albuquerque',\n",
|
213 |
-
" 'Nashville',\n",
|
214 |
-
" 'Aberdeen',\n",
|
215 |
-
" 'Harrisburg',\n",
|
216 |
-
" 'Fort Wayne',\n",
|
217 |
-
" 'Green Bay',\n",
|
218 |
-
" 'Wenatchee',\n",
|
219 |
-
" 'Santa Fe',\n",
|
220 |
-
" 'St. Petersburg',\n",
|
221 |
-
" 'Belleville',\n",
|
222 |
-
" 'Greensboro',\n",
|
223 |
-
" 'Lake Charles',\n",
|
224 |
-
" 'Traverse City',\n",
|
225 |
-
" 'Erie',\n",
|
226 |
-
" 'Niagara Falls',\n",
|
227 |
-
" 'Pocatello',\n",
|
228 |
-
" 'Idaho Falls',\n",
|
229 |
-
" 'Alpena',\n",
|
230 |
-
" 'Wilmington',\n",
|
231 |
-
" 'Ontario',\n",
|
232 |
-
" 'Iron Mountain',\n",
|
233 |
-
" 'Lubbock',\n",
|
234 |
-
" 'Helena',\n",
|
235 |
-
" 'Kalamazoo',\n",
|
236 |
-
" 'Cleveland',\n",
|
237 |
-
" 'Grand Island',\n",
|
238 |
-
" 'Bishop',\n",
|
239 |
-
" 'New Bern',\n",
|
240 |
-
" 'Melbourne',\n",
|
241 |
-
" 'Bristol',\n",
|
242 |
-
" 'Orlando',\n",
|
243 |
-
" 'Bismarck',\n",
|
244 |
-
" 'Fresno',\n",
|
245 |
-
" 'Billings',\n",
|
246 |
-
" 'Jackson',\n",
|
247 |
-
" 'Daytona Beach',\n",
|
248 |
-
" 'College Station',\n",
|
249 |
-
" 'Jacksonville',\n",
|
250 |
-
" 'Salt Lake City',\n",
|
251 |
-
" 'Corpus Christi',\n",
|
252 |
-
" 'Florence',\n",
|
253 |
-
" 'Moab',\n",
|
254 |
-
" 'Grand Forks',\n",
|
255 |
-
" 'Las Vegas',\n",
|
256 |
-
" 'Fairbanks',\n",
|
257 |
-
" 'Petersburg',\n",
|
258 |
-
" 'Wichita',\n",
|
259 |
-
" 'Rhinelander',\n",
|
260 |
-
" 'Kansas City',\n",
|
261 |
-
" 'Dothan',\n",
|
262 |
-
" 'Alamosa',\n",
|
263 |
-
" 'Adak Island',\n",
|
264 |
-
" 'Islip',\n",
|
265 |
-
" 'Wichita Falls',\n",
|
266 |
-
" 'Presque Isle',\n",
|
267 |
-
" 'San Luis Obispo',\n",
|
268 |
-
" 'Dayton',\n",
|
269 |
-
" 'Brunswick',\n",
|
270 |
-
" 'Fort Smith',\n",
|
271 |
-
" \"Martha's Vineyard\",\n",
|
272 |
-
" 'Portland',\n",
|
273 |
-
" 'Waco',\n",
|
274 |
-
" 'New York',\n",
|
275 |
-
" 'Columbus',\n",
|
276 |
-
" 'Tampa',\n",
|
277 |
-
" 'Dallas',\n",
|
278 |
-
" 'Little Rock',\n",
|
279 |
-
" 'Kona',\n",
|
280 |
-
" 'Clarksburg',\n",
|
281 |
-
" 'San Angelo',\n",
|
282 |
-
" 'Saginaw',\n",
|
283 |
-
" 'Houston',\n",
|
284 |
-
" 'Duluth',\n",
|
285 |
-
" 'Valparaiso',\n",
|
286 |
-
" 'Phoenix',\n",
|
287 |
-
" 'Oakland',\n",
|
288 |
-
" 'Watertown',\n",
|
289 |
-
" 'Ogden',\n",
|
290 |
-
" 'Cedar Rapids',\n",
|
291 |
-
" 'Cape Girardeau',\n",
|
292 |
-
" 'Sun Valley',\n",
|
293 |
-
" 'Sault Ste. Marie',\n",
|
294 |
-
" 'Trenton',\n",
|
295 |
-
" 'Missoula',\n",
|
296 |
-
" 'Pasco',\n",
|
297 |
-
" 'Brainerd',\n",
|
298 |
-
" 'Newburgh',\n",
|
299 |
-
" 'Gustavus',\n",
|
300 |
-
" 'Branson',\n",
|
301 |
-
" 'Providence',\n",
|
302 |
-
" 'Minot',\n",
|
303 |
-
" 'Huntsville',\n",
|
304 |
-
" 'San Antonio',\n",
|
305 |
-
" 'Marquette',\n",
|
306 |
-
" 'Owensboro',\n",
|
307 |
-
" 'Del Rio',\n",
|
308 |
-
" 'Portsmouth',\n",
|
309 |
-
" 'Bloomington',\n",
|
310 |
-
" 'Lexington',\n",
|
311 |
-
" 'Santa Barbara',\n",
|
312 |
-
" 'Baltimore',\n",
|
313 |
-
" 'Panama City',\n",
|
314 |
-
" 'Kodiak',\n",
|
315 |
-
" 'Jacksonville',\n",
|
316 |
-
" 'Yakima',\n",
|
317 |
-
" 'Vernal',\n",
|
318 |
-
" 'Salisbury',\n",
|
319 |
-
" 'Mission',\n",
|
320 |
-
" 'Newport News',\n",
|
321 |
-
" 'Charlottesville',\n",
|
322 |
-
" 'Grand Junction',\n",
|
323 |
-
" 'Baton Rouge',\n",
|
324 |
-
" 'Beaumont',\n",
|
325 |
-
" 'Staunton',\n",
|
326 |
-
" 'Kalispell',\n",
|
327 |
-
" 'Key West',\n",
|
328 |
-
" 'Worcester',\n",
|
329 |
-
" 'West Palm Beach',\n",
|
330 |
-
" 'Boise',\n",
|
331 |
-
" 'Grand Rapids',\n",
|
332 |
-
" 'Salina',\n",
|
333 |
-
" 'Fort Leonard Wood',\n",
|
334 |
-
" 'Walla Walla',\n",
|
335 |
-
" 'Everett',\n",
|
336 |
-
" 'Dillingham',\n",
|
337 |
-
" 'Bellingham',\n",
|
338 |
-
" 'Lansing',\n",
|
339 |
-
" 'Madison',\n",
|
340 |
-
" 'Victoria',\n",
|
341 |
-
" 'Sioux City',\n",
|
342 |
-
" 'Hattiesburg',\n",
|
343 |
-
" 'Stockton',\n",
|
344 |
-
" 'Anchorage',\n",
|
345 |
-
" 'Charlotte',\n",
|
346 |
-
" 'Jamestown',\n",
|
347 |
-
" 'Laramie',\n",
|
348 |
-
" 'Decatur',\n",
|
349 |
-
" 'Durango',\n",
|
350 |
-
" 'Longview',\n",
|
351 |
-
" 'Syracuse',\n",
|
352 |
-
" 'St. Cloud',\n",
|
353 |
-
" 'Santa Rosa',\n",
|
354 |
-
" 'Bakersfield',\n",
|
355 |
-
" 'North Platte',\n",
|
356 |
-
" 'La Crosse',\n",
|
357 |
-
" 'Plattsburgh',\n",
|
358 |
-
" 'Concord',\n",
|
359 |
-
" 'Atlanta',\n",
|
360 |
-
" 'Provo',\n",
|
361 |
-
" 'Ogdensburg',\n",
|
362 |
-
" 'Ithaca',\n",
|
363 |
-
" 'Colorado Springs',\n",
|
364 |
-
" 'Washington',\n",
|
365 |
-
" 'Williston',\n",
|
366 |
-
" 'Tulsa',\n",
|
367 |
-
" 'Midland',\n",
|
368 |
-
" 'Champaign',\n",
|
369 |
-
" 'Devils Lake',\n",
|
370 |
-
" 'Greer',\n",
|
371 |
-
" 'Muskegon',\n",
|
372 |
-
" 'Hibbing',\n",
|
373 |
-
" 'Santa Ana',\n",
|
374 |
-
" 'Ponce',\n",
|
375 |
-
" 'Prescott',\n",
|
376 |
-
" 'Indianapolis',\n",
|
377 |
-
" 'International Falls',\n",
|
378 |
-
" 'Rapid City',\n",
|
379 |
-
" 'Ketchikan',\n",
|
380 |
-
" 'St. Louis',\n",
|
381 |
-
" 'Santa Maria',\n",
|
382 |
-
" 'Elmira',\n",
|
383 |
-
" 'Alexandria',\n",
|
384 |
-
" 'San Jose',\n",
|
385 |
-
" 'Tucson',\n",
|
386 |
-
" 'San Juan',\n",
|
387 |
-
" 'Dubuque',\n",
|
388 |
-
" 'Burbank',\n",
|
389 |
-
" 'Gunnison',\n",
|
390 |
-
" 'Cedar City',\n",
|
391 |
-
" 'Hyannis',\n",
|
392 |
-
" 'Raleigh',\n",
|
393 |
-
" 'Norfolk',\n",
|
394 |
-
" 'New Orleans',\n",
|
395 |
-
" 'Medford',\n",
|
396 |
-
" 'White Plains',\n",
|
397 |
-
" 'Oklahoma City',\n",
|
398 |
-
" 'Chicago',\n",
|
399 |
-
" 'El Paso',\n",
|
400 |
-
" 'Rockford',\n",
|
401 |
-
" 'Aguadilla',\n",
|
402 |
-
" 'Omaha',\n",
|
403 |
-
" 'Scottsbluff',\n",
|
404 |
-
" 'Yakutat',\n",
|
405 |
-
" 'Arcata',\n",
|
406 |
-
" 'Spokane',\n",
|
407 |
-
" 'Brownsville',\n",
|
408 |
-
" 'Bend',\n",
|
409 |
-
" 'Hagerstown',\n",
|
410 |
-
" 'Peoria',\n",
|
411 |
-
" 'Appleton',\n",
|
412 |
-
" 'Roanoke',\n",
|
413 |
-
" 'Eugene',\n",
|
414 |
-
" 'Rock Springs',\n",
|
415 |
-
" 'Dodge City',\n",
|
416 |
-
" 'Austin',\n",
|
417 |
-
" 'Miami',\n",
|
418 |
-
" 'Dallas',\n",
|
419 |
-
" 'Mosinee',\n",
|
420 |
-
" 'Killeen',\n",
|
421 |
-
" 'Lihue',\n",
|
422 |
-
" 'Pittsburgh',\n",
|
423 |
-
" 'Tallahassee',\n",
|
424 |
-
" 'Butte',\n",
|
425 |
-
" 'Lawton',\n",
|
426 |
-
" 'Honolulu',\n",
|
427 |
-
" 'Greenville',\n",
|
428 |
-
" 'Juneau',\n",
|
429 |
-
" 'Myrtle Beach',\n",
|
430 |
-
" 'Boston',\n",
|
431 |
-
" 'Charleston',\n",
|
432 |
-
" 'Latrobe',\n",
|
433 |
-
" 'Knoxville',\n",
|
434 |
-
" 'Denver',\n",
|
435 |
-
" 'Bangor',\n",
|
436 |
-
" 'Albany',\n",
|
437 |
-
" 'Punta Gorda',\n",
|
438 |
-
" 'Fort Lauderdale',\n",
|
439 |
-
" 'Philadelphia',\n",
|
440 |
-
" 'Binghamton',\n",
|
441 |
-
" 'Great Falls',\n",
|
442 |
-
" 'Shreveport',\n",
|
443 |
-
" 'Asheville',\n",
|
444 |
-
" 'Cheyenne',\n",
|
445 |
-
" 'Milwaukee',\n",
|
446 |
-
" 'Nome',\n",
|
447 |
-
" 'Laredo',\n",
|
448 |
-
" 'Des Moines',\n",
|
449 |
-
" 'Fayetteville',\n",
|
450 |
-
" 'Lewisburg',\n",
|
451 |
-
" 'Fort Dodge',\n",
|
452 |
-
" 'Cody',\n",
|
453 |
-
" 'Chattanooga',\n",
|
454 |
-
" 'Deadhorse',\n",
|
455 |
-
" 'Kotzebue',\n",
|
456 |
-
" 'Sitka',\n",
|
457 |
-
" 'Bozeman',\n",
|
458 |
-
" 'Palm Springs',\n",
|
459 |
-
" 'Memphis',\n",
|
460 |
-
" 'Nantucket',\n",
|
461 |
-
" 'Texarkana',\n",
|
462 |
-
" 'Lewiston',\n",
|
463 |
-
" 'Valdosta',\n",
|
464 |
-
" 'Birmingham',\n",
|
465 |
-
" 'Scranton',\n",
|
466 |
-
" 'Pensacola',\n",
|
467 |
-
" 'Hancock',\n",
|
468 |
-
" 'Los Angeles',\n",
|
469 |
-
" 'Mason City',\n",
|
470 |
-
" 'Savannah',\n",
|
471 |
-
" 'West Yellowstone',\n",
|
472 |
-
" 'Long Beach',\n",
|
473 |
-
" 'Reno',\n",
|
474 |
-
" 'Akron',\n",
|
475 |
-
" 'Louisville',\n",
|
476 |
-
" 'Hartford',\n",
|
477 |
-
" 'Cincinnati',\n",
|
478 |
-
" 'Rochester',\n",
|
479 |
-
" 'San Francisco',\n",
|
480 |
-
" 'Detroit',\n",
|
481 |
-
" 'Monterey',\n",
|
482 |
-
" 'Escanaba',\n",
|
483 |
-
" 'Eau Claire']"
|
484 |
-
]
|
485 |
-
},
|
486 |
-
"execution_count": 94,
|
487 |
-
"metadata": {},
|
488 |
-
"output_type": "execute_result"
|
489 |
-
}
|
490 |
-
],
|
491 |
-
"source": [
|
492 |
-
"city_set"
|
493 |
-
]
|
494 |
-
},
|
495 |
-
{
|
496 |
-
"cell_type": "code",
|
497 |
-
"execution_count": 16,
|
498 |
-
"id": "cd0f41fb",
|
499 |
-
"metadata": {},
|
500 |
-
"outputs": [
|
501 |
-
{
|
502 |
-
"name": "stdout",
|
503 |
-
"output_type": "stream",
|
504 |
-
"text": [
|
505 |
-
"1 Restaurant Name\n",
|
506 |
-
"3 City\n",
|
507 |
-
"9 Cuisines\n",
|
508 |
-
"10 Average Cost for two\n",
|
509 |
-
"11 Currency\n",
|
510 |
-
"17 Aggregate rating\n"
|
511 |
-
]
|
512 |
-
}
|
513 |
-
],
|
514 |
-
"source": [
|
515 |
-
"for idx, unit in enumerate(data_dict['columns']):\n",
|
516 |
-
" if unit in ['Restaurant Name', 'City', 'Cuisines', 'Average Cost for two','Aggregate rating','Currency']:\n",
|
517 |
-
" print(idx,unit)"
|
518 |
-
]
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"cell_type": "code",
|
522 |
-
"execution_count": 17,
|
523 |
-
"id": "04fe71b7",
|
524 |
-
"metadata": {},
|
525 |
-
"outputs": [],
|
526 |
-
"source": [
|
527 |
-
"currency_set = set()\n",
|
528 |
-
"for unit in data_dict['data']:\n",
|
529 |
-
" currency_set.add(unit[11])"
|
530 |
-
]
|
531 |
-
},
|
532 |
-
{
|
533 |
-
"cell_type": "code",
|
534 |
-
"execution_count": 18,
|
535 |
-
"id": "3988186d",
|
536 |
-
"metadata": {},
|
537 |
-
"outputs": [
|
538 |
-
{
|
539 |
-
"data": {
|
540 |
-
"text/plain": [
|
541 |
-
"{'Botswana Pula(P)',\n",
|
542 |
-
" 'Brazilian Real(R$)',\n",
|
543 |
-
" 'Dollar($)',\n",
|
544 |
-
" 'Emirati Diram(AED)',\n",
|
545 |
-
" 'Indian Rupees(Rs.)',\n",
|
546 |
-
" 'Indonesian Rupiah(IDR)',\n",
|
547 |
-
" 'NewZealand($)',\n",
|
548 |
-
" 'Pounds(專)',\n",
|
549 |
-
" 'Qatari Rial(QR)',\n",
|
550 |
-
" 'Rand(R)',\n",
|
551 |
-
" 'Sri Lankan Rupee(LKR)',\n",
|
552 |
-
" 'Turkish Lira(TL)'}"
|
553 |
-
]
|
554 |
-
},
|
555 |
-
"execution_count": 18,
|
556 |
-
"metadata": {},
|
557 |
-
"output_type": "execute_result"
|
558 |
-
}
|
559 |
-
],
|
560 |
-
"source": [
|
561 |
-
"currency_set"
|
562 |
-
]
|
563 |
-
},
|
564 |
-
{
|
565 |
-
"cell_type": "code",
|
566 |
-
"execution_count": 20,
|
567 |
-
"id": "257e6a76",
|
568 |
-
"metadata": {},
|
569 |
-
"outputs": [],
|
570 |
-
"source": [
|
571 |
-
"exchange_rate = {\"Botswana Pula(P)\":0.074,\n",
|
572 |
-
" \"Brazilian Real(R$)\":0.21, \n",
|
573 |
-
" 'Dollar($)':1, \n",
|
574 |
-
" 'Emirati Diram(AED)':0.27,\n",
|
575 |
-
" \"Indian Rupees(Rs.)\":0.012087,\n",
|
576 |
-
" \"Indonesian Rupiah(IDR)\":0.000066,\n",
|
577 |
-
" 'NewZealand($)':0.61,\n",
|
578 |
-
" \"Pounds(專)\":1.28,\n",
|
579 |
-
" \"Qatari Rial(QR)\":0.27,\n",
|
580 |
-
" 'Rand(R)': 0.054,\n",
|
581 |
-
" \"Sri Lankan Rupee(LKR)\":0.0031,\n",
|
582 |
-
" 'Turkish Lira(TL)':0.037\n",
|
583 |
-
" }"
|
584 |
-
]
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"cell_type": "code",
|
588 |
-
"execution_count": 136,
|
589 |
-
"id": "c6b2691e",
|
590 |
-
"metadata": {},
|
591 |
-
"outputs": [
|
592 |
-
{
|
593 |
-
"data": {
|
594 |
-
"application/vnd.jupyter.widget-view+json": {
|
595 |
-
"model_id": "b7890e2caa7340d1870e641ada3249e1",
|
596 |
-
"version_major": 2,
|
597 |
-
"version_minor": 0
|
598 |
-
},
|
599 |
-
"text/plain": [
|
600 |
-
"0it [00:00, ?it/s]"
|
601 |
-
]
|
602 |
-
},
|
603 |
-
"metadata": {},
|
604 |
-
"output_type": "display_data"
|
605 |
-
}
|
606 |
-
],
|
607 |
-
"source": [
|
608 |
-
"from tqdm.autonotebook import tqdm\n",
|
609 |
-
"import random\n",
|
610 |
-
"new_data = []\n",
|
611 |
-
"\n",
|
612 |
-
"for idx, unit in tqdm(enumerate(data_dict['data'])):\n",
|
613 |
-
" tmp_dict = {k:\"\" for k in ['Name', 'City', 'Cuisines', 'Average Cost','Aggregate Rating']}\n",
|
614 |
-
" tmp_dict[\"Name\"] = unit[1]\n",
|
615 |
-
" tmp_dict[\"City\"] = random.sample(city_set,1)[0]\n",
|
616 |
-
" tmp_dict[\"Cuisines\"] = unit[9]\n",
|
617 |
-
" tmp_dict[\"Average Cost\"] = max(random.randint(10,100),int(unit[10] / 2 * exchange_rate[unit[11]]))\n",
|
618 |
-
" tmp_dict[\"Aggregate Rating\"] = unit[17]\n",
|
619 |
-
" new_data.append(tmp_dict)"
|
620 |
-
]
|
621 |
-
},
|
622 |
-
{
|
623 |
-
"cell_type": "code",
|
624 |
-
"execution_count": 137,
|
625 |
-
"id": "f27aaff1",
|
626 |
-
"metadata": {},
|
627 |
-
"outputs": [],
|
628 |
-
"source": [
|
629 |
-
"countries = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"French\"]\n",
|
630 |
-
"cuisine = [\"Tea\",\"Seafood\",\"Bakery\",\"Desserts\",\"BBQ\",\"Fast Food\",\"Cafe\",\"Pizza\"]\n",
|
631 |
-
"total_cuisine = countries + cuisine\n",
|
632 |
-
"for unit in new_data:\n",
|
633 |
-
" flag = False\n",
|
634 |
-
" final_cuisine = set()\n",
|
635 |
-
"# for c in total_cuisine:\n",
|
636 |
-
"# if c in str(unit['Cuisines']):\n",
|
637 |
-
"# final_cuisine.add(c)\n",
|
638 |
-
" choice_number = random.choices([0,1,1,2])[0]\n",
|
639 |
-
" for x in random.sample(countries,choice_number):\n",
|
640 |
-
" final_cuisine.add(x)\n",
|
641 |
-
" choice_number = random.choices([2,3,4])[0]\n",
|
642 |
-
" for x in random.sample(cuisine,choice_number):\n",
|
643 |
-
" final_cuisine.add(x)\n",
|
644 |
-
" unit['Cuisines'] = \", \".join(x for x in final_cuisine)"
|
645 |
-
]
|
646 |
-
},
|
647 |
-
{
|
648 |
-
"cell_type": "code",
|
649 |
-
"execution_count": 134,
|
650 |
-
"id": "8388274c",
|
651 |
-
"metadata": {},
|
652 |
-
"outputs": [
|
653 |
-
{
|
654 |
-
"name": "stdout",
|
655 |
-
"output_type": "stream",
|
656 |
-
"text": [
|
657 |
-
"1\n"
|
658 |
-
]
|
659 |
-
}
|
660 |
-
],
|
661 |
-
"source": [
|
662 |
-
"choice_number = random.choices([1,1,2])[0]\n",
|
663 |
-
"print(choice_number)"
|
664 |
-
]
|
665 |
-
},
|
666 |
-
{
|
667 |
-
"cell_type": "code",
|
668 |
-
"execution_count": 149,
|
669 |
-
"id": "6eb0520a",
|
670 |
-
"metadata": {},
|
671 |
-
"outputs": [
|
672 |
-
{
|
673 |
-
"data": {
|
674 |
-
"text/plain": [
|
675 |
-
"[1]"
|
676 |
-
]
|
677 |
-
},
|
678 |
-
"execution_count": 149,
|
679 |
-
"metadata": {},
|
680 |
-
"output_type": "execute_result"
|
681 |
-
}
|
682 |
-
],
|
683 |
-
"source": [
|
684 |
-
"random.choices([1,1,2])"
|
685 |
-
]
|
686 |
-
},
|
687 |
-
{
|
688 |
-
"cell_type": "code",
|
689 |
-
"execution_count": 148,
|
690 |
-
"id": "9e3afb30",
|
691 |
-
"metadata": {},
|
692 |
-
"outputs": [
|
693 |
-
{
|
694 |
-
"data": {
|
695 |
-
"text/plain": [
|
696 |
-
"{'Name': 'Gurgaon Hights',\n",
|
697 |
-
" 'City': 'New York',\n",
|
698 |
-
" 'Cuisines': 'Cafe, American, Indian, Fast Food',\n",
|
699 |
-
" 'Average Cost': 46,\n",
|
700 |
-
" 'Aggregate Rating': 2.5}"
|
701 |
-
]
|
702 |
-
},
|
703 |
-
"execution_count": 148,
|
704 |
-
"metadata": {},
|
705 |
-
"output_type": "execute_result"
|
706 |
-
}
|
707 |
-
],
|
708 |
-
"source": [
|
709 |
-
"new_data[1357]"
|
710 |
-
]
|
711 |
-
},
|
712 |
-
{
|
713 |
-
"cell_type": "code",
|
714 |
-
"execution_count": 143,
|
715 |
-
"id": "bfb243c0",
|
716 |
-
"metadata": {},
|
717 |
-
"outputs": [],
|
718 |
-
"source": [
|
719 |
-
"df = pd.DataFrame(new_data)"
|
720 |
-
]
|
721 |
-
},
|
722 |
-
{
|
723 |
-
"cell_type": "code",
|
724 |
-
"execution_count": 144,
|
725 |
-
"id": "af7e3411",
|
726 |
-
"metadata": {},
|
727 |
-
"outputs": [],
|
728 |
-
"source": [
|
729 |
-
"df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/restaurants/clean_restaurant_2022.csv')"
|
730 |
-
]
|
731 |
-
},
|
732 |
-
{
|
733 |
-
"cell_type": "code",
|
734 |
-
"execution_count": 128,
|
735 |
-
"id": "dad9bf9f",
|
736 |
-
"metadata": {},
|
737 |
-
"outputs": [
|
738 |
-
{
|
739 |
-
"data": {
|
740 |
-
"text/html": [
|
741 |
-
"<div>\n",
|
742 |
-
"<style scoped>\n",
|
743 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
744 |
-
" vertical-align: middle;\n",
|
745 |
-
" }\n",
|
746 |
-
"\n",
|
747 |
-
" .dataframe tbody tr th {\n",
|
748 |
-
" vertical-align: top;\n",
|
749 |
-
" }\n",
|
750 |
-
"\n",
|
751 |
-
" .dataframe thead th {\n",
|
752 |
-
" text-align: right;\n",
|
753 |
-
" }\n",
|
754 |
-
"</style>\n",
|
755 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
756 |
-
" <thead>\n",
|
757 |
-
" <tr style=\"text-align: right;\">\n",
|
758 |
-
" <th></th>\n",
|
759 |
-
" <th>Name</th>\n",
|
760 |
-
" <th>City</th>\n",
|
761 |
-
" <th>Cuisines</th>\n",
|
762 |
-
" <th>Average Cost</th>\n",
|
763 |
-
" <th>Aggregate Rating</th>\n",
|
764 |
-
" </tr>\n",
|
765 |
-
" </thead>\n",
|
766 |
-
" <tbody>\n",
|
767 |
-
" <tr>\n",
|
768 |
-
" <th>0</th>\n",
|
769 |
-
" <td>Le Petit Souffle</td>\n",
|
770 |
-
" <td>Concord</td>\n",
|
771 |
-
" <td>French, BBQ, Desserts, Fast Food</td>\n",
|
772 |
-
" <td>45</td>\n",
|
773 |
-
" <td>4.8</td>\n",
|
774 |
-
" </tr>\n",
|
775 |
-
" <tr>\n",
|
776 |
-
" <th>1</th>\n",
|
777 |
-
" <td>Izakaya Kikufuji</td>\n",
|
778 |
-
" <td>Niagara Falls</td>\n",
|
779 |
-
" <td>Mediterranean, Desserts, Seafood</td>\n",
|
780 |
-
" <td>44</td>\n",
|
781 |
-
" <td>4.5</td>\n",
|
782 |
-
" </tr>\n",
|
783 |
-
" <tr>\n",
|
784 |
-
" <th>2</th>\n",
|
785 |
-
" <td>Heat - Edsa Shangri-La</td>\n",
|
786 |
-
" <td>Walla Walla</td>\n",
|
787 |
-
" <td>Italian, BBQ, Fast Food, Cafe, Indian, Seafood</td>\n",
|
788 |
-
" <td>148</td>\n",
|
789 |
-
" <td>4.4</td>\n",
|
790 |
-
" </tr>\n",
|
791 |
-
" <tr>\n",
|
792 |
-
" <th>3</th>\n",
|
793 |
-
" <td>Ooma</td>\n",
|
794 |
-
" <td>Salt Lake City</td>\n",
|
795 |
-
" <td>Pizza, Italian, Bakery, Cafe, Seafood</td>\n",
|
796 |
-
" <td>55</td>\n",
|
797 |
-
" <td>4.9</td>\n",
|
798 |
-
" </tr>\n",
|
799 |
-
" <tr>\n",
|
800 |
-
" <th>4</th>\n",
|
801 |
-
" <td>Sambo Kojin</td>\n",
|
802 |
-
" <td>Rochester</td>\n",
|
803 |
-
" <td>Tea, Pizza, French, Cafe, Mediterranean, Seafood</td>\n",
|
804 |
-
" <td>88</td>\n",
|
805 |
-
" <td>4.8</td>\n",
|
806 |
-
" </tr>\n",
|
807 |
-
" <tr>\n",
|
808 |
-
" <th>...</th>\n",
|
809 |
-
" <td>...</td>\n",
|
810 |
-
" <td>...</td>\n",
|
811 |
-
" <td>...</td>\n",
|
812 |
-
" <td>...</td>\n",
|
813 |
-
" <td>...</td>\n",
|
814 |
-
" </tr>\n",
|
815 |
-
" <tr>\n",
|
816 |
-
" <th>9546</th>\n",
|
817 |
-
" <td>Naml郾 Gurme</td>\n",
|
818 |
-
" <td>Minneapolis</td>\n",
|
819 |
-
" <td>Tea, American, Desserts</td>\n",
|
820 |
-
" <td>84</td>\n",
|
821 |
-
" <td>4.1</td>\n",
|
822 |
-
" </tr>\n",
|
823 |
-
" <tr>\n",
|
824 |
-
" <th>9547</th>\n",
|
825 |
-
" <td>Ceviz A埕ac郾</td>\n",
|
826 |
-
" <td>Waco</td>\n",
|
827 |
-
" <td>Tea, Cafe, BBQ, Mediterranean</td>\n",
|
828 |
-
" <td>58</td>\n",
|
829 |
-
" <td>4.2</td>\n",
|
830 |
-
" </tr>\n",
|
831 |
-
" <tr>\n",
|
832 |
-
" <th>9548</th>\n",
|
833 |
-
" <td>Huqqa</td>\n",
|
834 |
-
" <td>Chicago</td>\n",
|
835 |
-
" <td>Tea, Chinese, Bakery, Italian</td>\n",
|
836 |
-
" <td>13</td>\n",
|
837 |
-
" <td>3.7</td>\n",
|
838 |
-
" </tr>\n",
|
839 |
-
" <tr>\n",
|
840 |
-
" <th>9549</th>\n",
|
841 |
-
" <td>A侓侓k Kahve</td>\n",
|
842 |
-
" <td>Grand Rapids</td>\n",
|
843 |
-
" <td>Cafe, French, Bakery, Fast Food</td>\n",
|
844 |
-
" <td>30</td>\n",
|
845 |
-
" <td>4.0</td>\n",
|
846 |
-
" </tr>\n",
|
847 |
-
" <tr>\n",
|
848 |
-
" <th>9550</th>\n",
|
849 |
-
" <td>Walter's Coffee Roastery</td>\n",
|
850 |
-
" <td>Hibbing</td>\n",
|
851 |
-
" <td>Pizza, Mexican, Bakery, Cafe, Seafood</td>\n",
|
852 |
-
" <td>20</td>\n",
|
853 |
-
" <td>4.0</td>\n",
|
854 |
-
" </tr>\n",
|
855 |
-
" </tbody>\n",
|
856 |
-
"</table>\n",
|
857 |
-
"<p>9551 rows × 5 columns</p>\n",
|
858 |
-
"</div>"
|
859 |
-
],
|
860 |
-
"text/plain": [
|
861 |
-
" Name City \\\n",
|
862 |
-
"0 Le Petit Souffle Concord \n",
|
863 |
-
"1 Izakaya Kikufuji Niagara Falls \n",
|
864 |
-
"2 Heat - Edsa Shangri-La Walla Walla \n",
|
865 |
-
"3 Ooma Salt Lake City \n",
|
866 |
-
"4 Sambo Kojin Rochester \n",
|
867 |
-
"... ... ... \n",
|
868 |
-
"9546 Naml郾 Gurme Minneapolis \n",
|
869 |
-
"9547 Ceviz A埕ac郾 Waco \n",
|
870 |
-
"9548 Huqqa Chicago \n",
|
871 |
-
"9549 A侓侓k Kahve Grand Rapids \n",
|
872 |
-
"9550 Walter's Coffee Roastery Hibbing \n",
|
873 |
-
"\n",
|
874 |
-
" Cuisines Average Cost \\\n",
|
875 |
-
"0 French, BBQ, Desserts, Fast Food 45 \n",
|
876 |
-
"1 Mediterranean, Desserts, Seafood 44 \n",
|
877 |
-
"2 Italian, BBQ, Fast Food, Cafe, Indian, Seafood 148 \n",
|
878 |
-
"3 Pizza, Italian, Bakery, Cafe, Seafood 55 \n",
|
879 |
-
"4 Tea, Pizza, French, Cafe, Mediterranean, Seafood 88 \n",
|
880 |
-
"... ... ... \n",
|
881 |
-
"9546 Tea, American, Desserts 84 \n",
|
882 |
-
"9547 Tea, Cafe, BBQ, Mediterranean 58 \n",
|
883 |
-
"9548 Tea, Chinese, Bakery, Italian 13 \n",
|
884 |
-
"9549 Cafe, French, Bakery, Fast Food 30 \n",
|
885 |
-
"9550 Pizza, Mexican, Bakery, Cafe, Seafood 20 \n",
|
886 |
-
"\n",
|
887 |
-
" Aggregate Rating \n",
|
888 |
-
"0 4.8 \n",
|
889 |
-
"1 4.5 \n",
|
890 |
-
"2 4.4 \n",
|
891 |
-
"3 4.9 \n",
|
892 |
-
"4 4.8 \n",
|
893 |
-
"... ... \n",
|
894 |
-
"9546 4.1 \n",
|
895 |
-
"9547 4.2 \n",
|
896 |
-
"9548 3.7 \n",
|
897 |
-
"9549 4.0 \n",
|
898 |
-
"9550 4.0 \n",
|
899 |
-
"\n",
|
900 |
-
"[9551 rows x 5 columns]"
|
901 |
-
]
|
902 |
-
},
|
903 |
-
"execution_count": 128,
|
904 |
-
"metadata": {},
|
905 |
-
"output_type": "execute_result"
|
906 |
-
}
|
907 |
-
],
|
908 |
-
"source": [
|
909 |
-
"df"
|
910 |
-
]
|
911 |
-
},
|
912 |
-
{
|
913 |
-
"cell_type": "code",
|
914 |
-
"execution_count": 48,
|
915 |
-
"id": "e168b1c5",
|
916 |
-
"metadata": {},
|
917 |
-
"outputs": [],
|
918 |
-
"source": [
|
919 |
-
"cuisine_dict = {}\n",
|
920 |
-
"for unit in new_data:\n",
|
921 |
-
" for x in str(unit['Cuisines']).split(', '):\n",
|
922 |
-
" if x not in cuisine_dict:\n",
|
923 |
-
" cuisine_dict[x] = 1\n",
|
924 |
-
" else:\n",
|
925 |
-
" cuisine_dict[x] += 1"
|
926 |
-
]
|
927 |
-
},
|
928 |
-
{
|
929 |
-
"cell_type": "code",
|
930 |
-
"execution_count": 49,
|
931 |
-
"id": "564d4bda",
|
932 |
-
"metadata": {},
|
933 |
-
"outputs": [
|
934 |
-
{
|
935 |
-
"name": "stdout",
|
936 |
-
"output_type": "stream",
|
937 |
-
"text": [
|
938 |
-
"French 29\n",
|
939 |
-
"Japanese 135\n",
|
940 |
-
"Desserts 653\n",
|
941 |
-
"Seafood 174\n",
|
942 |
-
"Asian 233\n",
|
943 |
-
"Filipino 10\n",
|
944 |
-
"Indian 70\n",
|
945 |
-
"Sushi 75\n",
|
946 |
-
"Korean 21\n",
|
947 |
-
"Chinese 2735\n",
|
948 |
-
"European 148\n",
|
949 |
-
"Mexican 181\n",
|
950 |
-
"American 390\n",
|
951 |
-
"Ice Cream 226\n",
|
952 |
-
"Cafe 703\n",
|
953 |
-
"Italian 764\n",
|
954 |
-
"Pizza 381\n",
|
955 |
-
"Bakery 745\n",
|
956 |
-
"Mediterranean 112\n",
|
957 |
-
"Fast Food 1986\n",
|
958 |
-
"Brazilian 28\n",
|
959 |
-
"Arabian 28\n",
|
960 |
-
"Bar Food 39\n",
|
961 |
-
"Grill 21\n",
|
962 |
-
"International 21\n",
|
963 |
-
"Peruvian 1\n",
|
964 |
-
"Latin American 11\n",
|
965 |
-
"Burger 251\n",
|
966 |
-
"Juices 29\n",
|
967 |
-
"Healthy Food 150\n",
|
968 |
-
"Beverages 229\n",
|
969 |
-
"Lebanese 69\n",
|
970 |
-
"Sandwich 53\n",
|
971 |
-
"Steak 62\n",
|
972 |
-
"BBQ 33\n",
|
973 |
-
"Gourmet Fast Food 1\n",
|
974 |
-
"Mineira 1\n",
|
975 |
-
"North Eastern 9\n",
|
976 |
-
"nan 9\n",
|
977 |
-
"Coffee and Tea 19\n",
|
978 |
-
"Vegetarian 23\n",
|
979 |
-
"Tapas 19\n",
|
980 |
-
"Breakfast 41\n",
|
981 |
-
"Diner 6\n",
|
982 |
-
"Southern 24\n",
|
983 |
-
"Southwestern 7\n",
|
984 |
-
"Spanish 16\n",
|
985 |
-
"Argentine 2\n",
|
986 |
-
"Caribbean 7\n",
|
987 |
-
"German 10\n",
|
988 |
-
"Vietnamese 21\n",
|
989 |
-
"Thai 234\n",
|
990 |
-
"Modern Australian 11\n",
|
991 |
-
"Teriyaki 2\n",
|
992 |
-
"Cajun 10\n",
|
993 |
-
"Canadian 1\n",
|
994 |
-
"Tex-Mex 19\n",
|
995 |
-
"Middle Eastern 22\n",
|
996 |
-
"Greek 15\n",
|
997 |
-
"Bubble Tea 1\n",
|
998 |
-
"Tea 48\n",
|
999 |
-
"Australian 5\n",
|
1000 |
-
"Fusion 4\n",
|
1001 |
-
"Cuban 2\n",
|
1002 |
-
"Hawaiian 8\n",
|
1003 |
-
"Salad 93\n",
|
1004 |
-
"Irish 1\n",
|
1005 |
-
"New American 2\n",
|
1006 |
-
"Soul Food 1\n",
|
1007 |
-
"Turkish 15\n",
|
1008 |
-
"Pub Food 2\n",
|
1009 |
-
"Persian 2\n",
|
1010 |
-
"Continental 736\n",
|
1011 |
-
"Singaporean 4\n",
|
1012 |
-
"Malay 1\n",
|
1013 |
-
"Cantonese 2\n",
|
1014 |
-
"Dim Sum 3\n",
|
1015 |
-
"Western 10\n",
|
1016 |
-
"Finger Food 114\n",
|
1017 |
-
"British 16\n",
|
1018 |
-
"Deli 3\n",
|
1019 |
-
"Indonesian 14\n",
|
1020 |
-
"North Indian 3960\n",
|
1021 |
-
"Mughlai 995\n",
|
1022 |
-
"Biryani 177\n",
|
1023 |
-
"South Indian 636\n",
|
1024 |
-
"Pakistani 12\n",
|
1025 |
-
"Afghani 14\n",
|
1026 |
-
"Hyderabadi 26\n",
|
1027 |
-
"Rajasthani 21\n",
|
1028 |
-
"Street Food 562\n",
|
1029 |
-
"Goan 20\n",
|
1030 |
-
"African 8\n",
|
1031 |
-
"Portuguese 7\n",
|
1032 |
-
"Gujarati 11\n",
|
1033 |
-
"Armenian 3\n",
|
1034 |
-
"Mithai 380\n",
|
1035 |
-
"Maharashtrian 10\n",
|
1036 |
-
"Modern Indian 16\n",
|
1037 |
-
"Charcoal Grill 4\n",
|
1038 |
-
"Malaysian 22\n",
|
1039 |
-
"Burmese 10\n",
|
1040 |
-
"Chettinad 11\n",
|
1041 |
-
"Parsi 8\n",
|
1042 |
-
"Tibetan 44\n",
|
1043 |
-
"Raw Meats 114\n",
|
1044 |
-
"Kerala 23\n",
|
1045 |
-
"Belgian 2\n",
|
1046 |
-
"Kashmiri 20\n",
|
1047 |
-
"South American 2\n",
|
1048 |
-
"Bengali 29\n",
|
1049 |
-
"Iranian 3\n",
|
1050 |
-
"Lucknowi 13\n",
|
1051 |
-
"Awadhi 11\n",
|
1052 |
-
"Nepalese 9\n",
|
1053 |
-
"Drinks Only 2\n",
|
1054 |
-
"Oriya 2\n",
|
1055 |
-
"Bihari 6\n",
|
1056 |
-
"Assamese 4\n",
|
1057 |
-
"Andhra 10\n",
|
1058 |
-
"Mangalorean 4\n",
|
1059 |
-
"Malwani 1\n",
|
1060 |
-
"Cuisine Varies 1\n",
|
1061 |
-
"Moroccan 5\n",
|
1062 |
-
"Naga 8\n",
|
1063 |
-
"Sri Lankan 5\n",
|
1064 |
-
"Peranakan 1\n",
|
1065 |
-
"Sunda 3\n",
|
1066 |
-
"Ramen 2\n",
|
1067 |
-
"Kiwi 6\n",
|
1068 |
-
"Asian Fusion 2\n",
|
1069 |
-
"Taiwanese 2\n",
|
1070 |
-
"Fish and Chips 1\n",
|
1071 |
-
"Contemporary 9\n",
|
1072 |
-
"Scottish 3\n",
|
1073 |
-
"Curry 6\n",
|
1074 |
-
"Patisserie 4\n",
|
1075 |
-
"South African 6\n",
|
1076 |
-
"Durban 1\n",
|
1077 |
-
"Kebab 10\n",
|
1078 |
-
"Turkish Pizza 8\n",
|
1079 |
-
"Izgara 2\n",
|
1080 |
-
"World Cuisine 4\n",
|
1081 |
-
"D韄ner 1\n",
|
1082 |
-
"Restaurant Cafe 4\n",
|
1083 |
-
"B韄rek 1\n"
|
1084 |
-
]
|
1085 |
-
}
|
1086 |
-
],
|
1087 |
-
"source": [
|
1088 |
-
"for unit in cuisine_dict:\n",
|
1089 |
-
" print(unit,cuisine_dict[unit])"
|
1090 |
-
]
|
1091 |
-
},
|
1092 |
-
{
|
1093 |
-
"cell_type": "code",
|
1094 |
-
"execution_count": null,
|
1095 |
-
"id": "967426f0",
|
1096 |
-
"metadata": {},
|
1097 |
-
"outputs": [],
|
1098 |
-
"source": [
|
1099 |
-
"cuisine = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"Middle Eastern\",\"Breakfast\",\"Korean\",\"Asian\",\"French\",\"Tea\",\"Seafood\",\"Bakery\",\"Street Food\"]"
|
1100 |
-
]
|
1101 |
-
},
|
1102 |
-
{
|
1103 |
-
"cell_type": "code",
|
1104 |
-
"execution_count": 67,
|
1105 |
-
"id": "880dd6bf",
|
1106 |
-
"metadata": {},
|
1107 |
-
"outputs": [],
|
1108 |
-
"source": [
|
1109 |
-
"countries = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"Middle Eastern\",,\"Korean\",\"Asian\",\"French\"]"
|
1110 |
-
]
|
1111 |
-
},
|
1112 |
-
{
|
1113 |
-
"cell_type": "code",
|
1114 |
-
"execution_count": 68,
|
1115 |
-
"id": "89d9aba9",
|
1116 |
-
"metadata": {},
|
1117 |
-
"outputs": [],
|
1118 |
-
"source": [
|
1119 |
-
"cuisine = [\"Tea\",\"Seafood\",\"Bakery\",\"Street Food\",\"Desserts\",\"BBQ\",\"Street Food\",\"Fast Food\",\"Cafe\",\"Pizza\"]"
|
1120 |
-
]
|
1121 |
-
},
|
1122 |
-
{
|
1123 |
-
"cell_type": "code",
|
1124 |
-
"execution_count": null,
|
1125 |
-
"id": "ff103725",
|
1126 |
-
"metadata": {},
|
1127 |
-
"outputs": [],
|
1128 |
-
"source": []
|
1129 |
-
}
|
1130 |
-
],
|
1131 |
-
"metadata": {
|
1132 |
-
"kernelspec": {
|
1133 |
-
"display_name": "Python 3 (ipykernel)",
|
1134 |
-
"language": "python",
|
1135 |
-
"name": "python3"
|
1136 |
-
},
|
1137 |
-
"language_info": {
|
1138 |
-
"codemirror_mode": {
|
1139 |
-
"name": "ipython",
|
1140 |
-
"version": 3
|
1141 |
-
},
|
1142 |
-
"file_extension": ".py",
|
1143 |
-
"mimetype": "text/x-python",
|
1144 |
-
"name": "python",
|
1145 |
-
"nbconvert_exporter": "python",
|
1146 |
-
"pygments_lexer": "ipython3",
|
1147 |
-
"version": "3.9.16"
|
1148 |
-
}
|
1149 |
-
},
|
1150 |
-
"nbformat": 4,
|
1151 |
-
"nbformat_minor": 5
|
1152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|