|
from tools.accommodations.apis import Accommodations |
|
from tools.flights.apis import Flights |
|
from tools.restaurants.apis import Restaurants |
|
from tools.rank.apis import Rank |
|
from tools.filter.apis import Filter |
|
from tools.googleDistanceMatrix.apis import GoogleDistanceMatrix |
|
import pandas as pd |
|
|
|
hotel = Accommodations() |
|
flight = Flights() |
|
flight.load_db() |
|
restaurant = Restaurants() |
|
rank = Rank() |
|
filter = Filter() |
|
distanceMatrix = GoogleDistanceMatrix() |
|
|
|
|
|
def estimate_budget(data, mode): |
|
""" |
|
Estimate the budget based on the mode (lowest, highest, average) for flight, hotel, or restaurant data. |
|
""" |
|
if mode == "lowest": |
|
return min(data) |
|
elif mode == "highest": |
|
return max(data) |
|
elif mode == "average": |
|
|
|
data = [x for x in data if str(x) != 'nan'] |
|
return sum(data) / len(data) |
|
|
|
|
|
def budget_calc(org, dest, days, date:list , people_number=None, local_constraint = None): |
|
""" |
|
Calculate the estimated budget for all three modes: lowest, highest, average. |
|
grain: city, state |
|
""" |
|
if days == 3: |
|
grain = "city" |
|
elif days in [5,7]: |
|
grain = "state" |
|
|
|
if grain not in ["city", "state"]: |
|
raise ValueError("grain must be one of city, state") |
|
|
|
|
|
multipliers = { |
|
3: {"flight": 2, "hotel": 3, "restaurant": 9}, |
|
5: {"flight": 3, "hotel": 5, "restaurant": 15}, |
|
7: {"flight": 4, "hotel": 7, "restaurant": 21} |
|
} |
|
|
|
if grain == "city": |
|
hotel_data = hotel.run(dest) |
|
restaurant_data = restaurant.run(dest) |
|
flight_data = flight.data[(flight.data["DestCityName"] == dest) & (flight.data["OriginCityName"] == org)] |
|
|
|
|
|
elif grain == "state": |
|
city_set = open('../database/background/citySet_with_states.txt').read().strip().split('\n') |
|
|
|
all_hotel_data = [] |
|
all_restaurant_data = [] |
|
all_flight_data = [] |
|
|
|
for city in city_set: |
|
if dest == city.split('\t')[1]: |
|
candidate_city = city.split('\t')[0] |
|
|
|
|
|
current_hotel_data = hotel.run(candidate_city) |
|
current_restaurant_data = restaurant.run(candidate_city) |
|
current_flight_data = flight.data[(flight.data["DestCityName"] == candidate_city) & (flight.data["OriginCityName"] == org)] |
|
|
|
|
|
all_hotel_data.append(current_hotel_data) |
|
all_restaurant_data.append(current_restaurant_data) |
|
all_flight_data.append(current_flight_data) |
|
|
|
|
|
hotel_data = pd.concat(all_hotel_data, axis=0) |
|
restaurant_data = pd.concat(all_restaurant_data, axis=0) |
|
flight_data = pd.concat(all_flight_data, axis=0) |
|
|
|
flight_data = flight_data[flight_data['FlightDate'].isin(date)] |
|
|
|
if people_number: |
|
hotel_data = hotel_data[hotel_data['maximum occupancy'] >= people_number] |
|
|
|
if local_constraint: |
|
|
|
if local_constraint['transportation'] == 'no self-driving': |
|
if grain == "city": |
|
if len(flight_data[flight_data['FlightDate'] == date[0]]) < 2: |
|
raise ValueError("No flight data available for the given constraints.") |
|
elif grain == "state": |
|
if len(flight_data[flight_data['FlightDate'] == date[0]]) < 10: |
|
raise ValueError("No flight data available for the given constraints.") |
|
|
|
elif local_constraint['transportation'] == 'no flight': |
|
if len(flight_data[flight_data['FlightDate'] == date[0]]) < 2 or flight_data.iloc[0]['Distance'] > 800: |
|
raise ValueError("Impossible") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if local_constraint['room type']: |
|
if local_constraint['room type'] == 'shared room': |
|
hotel_data = hotel_data[hotel_data['room type'] == 'Shared room'] |
|
elif local_constraint['room type'] == 'not shared room': |
|
hotel_data = hotel_data[(hotel_data['room type'] == 'Private room') | (hotel_data['room type'] == 'Entire home/apt')] |
|
elif local_constraint['room type'] == 'private room': |
|
hotel_data = hotel_data[hotel_data['room type'] == 'Private room'] |
|
elif local_constraint['room type'] == 'entire room': |
|
hotel_data = hotel_data[hotel_data['room type'] == 'Entire home/apt'] |
|
|
|
if days == 3: |
|
if len(hotel_data) < 3: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
elif days == 5: |
|
if len(hotel_data) < 5: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
elif days == 7: |
|
if len(hotel_data) < 7: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
|
|
if local_constraint['house rule']: |
|
if local_constraint['house rule'] == 'parties': |
|
|
|
hotel_data = hotel_data[~hotel_data['house_rules'].str.contains('No parties')] |
|
elif local_constraint['house rule'] == 'smoking': |
|
hotel_data = hotel_data[~hotel_data['house_rules'].str.contains('No smoking')] |
|
elif local_constraint['house rule'] == 'children under 10': |
|
hotel_data = hotel_data[~hotel_data['house_rules'].str.contains('No children under 10')] |
|
elif local_constraint['house rule'] == 'pets': |
|
hotel_data = hotel_data[~hotel_data['house_rules'].str.contains('No pets')] |
|
elif local_constraint['house rule'] == 'visitors': |
|
hotel_data = hotel_data[~hotel_data['house_rules'].str.contains('No visitors')] |
|
|
|
if days == 3: |
|
if len(hotel_data) < 3: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
elif days == 5: |
|
if len(hotel_data) < 5: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
elif days == 7: |
|
if len(hotel_data) < 7: |
|
raise ValueError("No hotel data available for the given constraints.") |
|
|
|
if local_constraint['cuisine']: |
|
|
|
restaurant_data = restaurant_data[restaurant_data['Cuisines'].str.contains('|'.join(local_constraint['cuisine']))] |
|
|
|
if days == 3: |
|
if len(restaurant_data) < 3: |
|
raise ValueError("No restaurant data available for the given constraints.") |
|
elif days == 5: |
|
if len(restaurant_data) < 5: |
|
raise ValueError("No restaurant data available for the given constraints.") |
|
elif days == 7: |
|
if len(restaurant_data) < 7: |
|
raise ValueError("No restaurant data available for the given constraints.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
budgets = {} |
|
for mode in ["lowest", "highest", "average"]: |
|
if local_constraint and local_constraint['transportation'] == 'self driving': |
|
flight_budget = eval(distanceMatrix.run(org, dest)['cost'].replace("$","")) * multipliers[days]["flight"] |
|
else: |
|
flight_budget = estimate_budget(flight_data["Price"].tolist(), mode) * multipliers[days]["flight"] |
|
hotel_budget = estimate_budget(hotel_data["price"].tolist(), mode) * multipliers[days]["hotel"] |
|
restaurant_budget = estimate_budget(restaurant_data["Average Cost"].tolist(), mode) * multipliers[days]["restaurant"] |
|
total_budget = flight_budget + hotel_budget + restaurant_budget |
|
budgets[mode] = total_budget |
|
|
|
return budgets |
|
|
|
|