chatbot try
Browse files
app.py
CHANGED
@@ -1,7 +1,26 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
from peft import PeftModel
|
3 |
+
from transformers import AutoTokenizer
|
4 |
import gradio as gr
|
5 |
|
6 |
+
base_model_name = "unsloth/Llama-3.2-3B-Instruct"
|
7 |
+
base_model, tokenizer = FastLanguageModel.from_pretrained(
|
8 |
+
model_name=base_model_name,
|
9 |
+
max_seq_length=2048,
|
10 |
+
dtype=None,
|
11 |
+
load_in_4bit=True
|
12 |
+
)
|
13 |
|
14 |
+
# lora adapters from my Hugging Face model
|
15 |
+
lora_model_name = "oskaralf/lora_model" # Hugging Face repository for LoRA adapters
|
16 |
+
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
17 |
+
FastLanguageModel.for_inference(model)
|
18 |
+
|
19 |
+
def chatbot(input_text):
|
20 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
21 |
+
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=64)
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
return response
|
24 |
+
|
25 |
+
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Chatbot")
|
26 |
+
iface.launch()
|