Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
import torch | |
from PIL import Image | |
import numpy as np | |
def process(input_image, prompt): | |
inputs = processor(text=prompt, images=input_image, padding="max_length", return_tensors="pt") | |
# predict | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
preds = torch.sigmoid(outputs.logits).squeeze().detach().cpu().numpy() | |
preds = np.where(preds > 0.3, 255, 0).astype(np.uint8) | |
preds = Image.fromarray(preds.astype(np.uint8)) | |
preds = np.array(preds.resize((input_image.width, input_image.height))) | |
return preds | |
if __name__ == '__main__': | |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") | |
input_image = gr.inputs.Image(label='image', type='pil') | |
prompt = gr.Textbox(label='Prompt') | |
ips = [ | |
input_image, prompt | |
] | |
outputs = "image" | |
input_size = (256, 256) | |
output_size = (256, 256) | |
iface = gr.Interface(fn=process, | |
inputs=ips, | |
outputs=outputs, | |
input_size=input_size, | |
output_size=output_size) | |
iface.launch() |