Spaces:
Sleeping
Sleeping
import re | |
import string | |
import numpy as np | |
import torch | |
from nltk.corpus import stopwords | |
stop_words = set(stopwords.words('russian')) | |
def data_preprocessing(text: str) -> str: | |
"""preprocessing string: lowercase, removing html-tags, punctuation, | |
stopwords, digits | |
Args: | |
text (str): input string for preprocessing | |
Returns: | |
str: preprocessed string | |
""" | |
text = text.lower() | |
text = re.sub('<.*?>', '', text) # html tags | |
text = ''.join([c for c in text if c not in string.punctuation])# Remove punctuation | |
text = ' '.join([word for word in text.split() if word not in stop_words]) | |
text = [word for word in text.split() if not word.isdigit()] | |
text = ' '.join(text) | |
return text | |
def get_words_by_freq(sorted_words: list[tuple[str, int]], n: int = 10) -> list: | |
return list(filter(lambda x: x[1] > n, sorted_words)) | |
def padding(review_int: list, seq_len: int) -> np.array: # type: ignore | |
"""Make left-sided padding for input list of tokens | |
Args: | |
review_int (list): input list of tokens | |
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros | |
Returns: | |
np.array: padded sequences | |
""" | |
features = np.zeros((len(review_int), seq_len), dtype = int) | |
for i, review in enumerate(review_int): | |
if len(review) <= seq_len: | |
zeros = list(np.zeros(seq_len - len(review))) | |
new = zeros + review | |
else: | |
new = review[: seq_len] | |
features[i, :] = np.array(new) | |
return features | |
def preprocess_single_string( | |
input_string: str, | |
seq_len: int, | |
vocab_to_int: dict, | |
verbose : bool = False | |
) -> torch.tensor: | |
"""Function for all preprocessing steps on a single string | |
Args: | |
input_string (str): input single string for preprocessing | |
seq_len (int): max length of sequence, it len(review_int[i]) > seq_len it will be trimmed, else it will be padded by zeros | |
vocab_to_int (dict, optional): word corpus {'word' : int index}. Defaults to vocab_to_int. | |
Returns: | |
list: preprocessed string | |
""" | |
preprocessed_string = data_preprocessing(input_string) | |
result_list = [] | |
for word in preprocessed_string.split(): | |
try: | |
result_list.append(vocab_to_int[word]) | |
except KeyError as e: | |
if verbose: | |
print(f'{e}: not in dictionary!') | |
pass | |
result_padded = padding([result_list], seq_len)[0] | |
return torch.tensor(result_padded) | |