Spaces:
Runtime error
Runtime error
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.llms import OpenAI | |
from dotenv import load_dotenv | |
import os | |
import subprocess | |
# # Load environment variables from .env file | |
# load_dotenv() | |
# # Access environment variables | |
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
# SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY") | |
subprocess.run(["git", "clone", "https://github.com/TheMITTech/shakespeare"], check=True) | |
from glob import glob | |
files = glob("./shakespeare/**/*.html") | |
import shutil | |
import os | |
os.mkdir('./data') | |
destination_folder = './data/' | |
for html_file in files: | |
shutil.move(html_file, destination_folder + html_file.split("/")[-1]) | |
from langchain.document_loaders import BSHTMLLoader, DirectoryLoader | |
from bs4 import BeautifulSoup | |
bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) | |
data = bshtml_dir_loader.load() | |
from transformers import AutoTokenizer | |
bloomz_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b7") | |
from langchain.text_splitter import CharacterTextSplitter | |
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator="\n") | |
documents = text_splitter.split_documents(data) | |
from langchain.embeddings import HuggingFaceEmbeddings | |
embeddings = HuggingFaceEmbeddings() | |
from langchain.vectorstores import Chroma | |
persist_directory = "vector_db" | |
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory) | |
vectordb.persist() | |
vectordb = None | |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
from langchain import HuggingFacePipeline | |
llm = HuggingFacePipeline.from_model_id( | |
model_id="bigscience/bloomz-1b7", | |
task="text-generation", | |
model_kwargs={"temperature" : 0, "max_length" : 500}) | |
doc_retriever = vectordb.as_retriever() | |
from langchain.chains import RetrievalQA | |
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) | |
# from langchain.utilities import SerpAPIWrapper | |
# search = SerpAPIWrapper() | |
# from langchain.agents import initialize_agent, Tool | |
# from langchain.agents import AgentType | |
# from langchain.tools import BaseTool | |
# from langchain.llms import OpenAI | |
# from langchain import LLMMathChain, SerpAPIWrapper | |
# tools = [ | |
# Tool( | |
# name = "Shakespeare QA System", | |
# func=shakespeare_qa.run, | |
# description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question." | |
# ), | |
# Tool( | |
# name = "SERP API Search", | |
# func=search.run, | |
# description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question." | |
# ), | |
# ] | |
# from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory | |
# memory = ConversationBufferMemory(memory_key="chat_history") | |
# readonlymemory = ReadOnlySharedMemory(memory=memory) | |
# from langchain.agents import ZeroShotAgent, Tool, AgentExecutor | |
# prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" | |
# suffix = """Begin!" | |
# {chat_history} | |
# Question: {input} | |
# {agent_scratchpad}""" | |
# prompt = ZeroShotAgent.create_prompt( | |
# tools, | |
# prefix=prefix, | |
# suffix=suffix, | |
# input_variables=["input", "chat_history", "agent_scratchpad"] | |
# ) | |
# from langchain import OpenAI, LLMChain, PromptTemplate | |
# llm_chain = LLMChain(llm=llm, prompt=prompt) | |
# agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | |
# agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) | |
def make_inference(query): | |
return(shakespeare_qa.run(input=query)) | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=2, label="Query"), | |
], | |
gr.outputs.Textbox(label="Response"), | |
title="🗣️QuestionMyDoc-Bloomz1b7📄", | |
description="🗣️QuestionMyDoc-Bloomz1b7📄 is a tool that allows you to ask questions about a document. In this case - Shakespears.", | |
).launch() |