|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import random |
|
|
|
models = [ |
|
"google/gemma-7b", |
|
"google/gemma-7b-it", |
|
"google/gemma-2b", |
|
"google/gemma-2b-it" |
|
] |
|
|
|
clients = [] |
|
for model in models: |
|
clients.append(InferenceClient(model)) |
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "" |
|
if history: |
|
for user_prompt, bot_response in history: |
|
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>" |
|
prompt += f"<start_of_turn>model{bot_response}" |
|
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model" |
|
return prompt |
|
|
|
|
|
def chat_inf(system_prompt, prompt, history, client_choice, seed, temp, tokens, top_p, rep_p): |
|
client = clients[int(client_choice) - 1] |
|
if not history: |
|
history = [] |
|
hist_len = 0 |
|
if history: |
|
hist_len = len(history) |
|
print(hist_len) |
|
|
|
generate_kwargs = dict( |
|
temperature=temp, |
|
max_new_tokens=tokens, |
|
top_p=top_p, |
|
repetition_penalty=rep_p, |
|
do_sample=True, |
|
seed=seed, |
|
) |
|
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, |
|
return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield [(prompt, output)] |
|
history.append((prompt, output)) |
|
yield history |
|
|
|
|
|
def clear_fn(): |
|
return None |
|
|
|
|
|
rand_val = random.randint(1, 1111111111111111) |
|
|
|
|
|
def check_rand(inp, val): |
|
if inp is True: |
|
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111)) |
|
else: |
|
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.HTML( |
|
"""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1></center>""") |
|
with gr.Group(): |
|
with gr.Row(): |
|
client_choice = gr.Dropdown(label="Models", type='index', choices=[c for c in models], value=models[0], |
|
interactive=True) |
|
chat_b = gr.Chatbot(height=500) |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
rand = gr.Checkbox(label="Random Seed", value=True) |
|
seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val) |
|
tokens = gr.Slider(label="Max new tokens", value=6400, minimum=0, maximum=8000, step=64, |
|
interactive=True, visible=True, info="The maximum number of tokens") |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9) |
|
top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9) |
|
rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0) |
|
|
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
sys_inp = gr.Textbox(label="System Prompt (optional)") |
|
inp = gr.Textbox(label="Prompt") |
|
with gr.Row(): |
|
btn = gr.Button("Chat") |
|
stop_btn = gr.Button("Stop") |
|
clear_btn = gr.Button("Clear") |
|
|
|
chat_sub = inp.submit(check_rand, [rand, seed], seed).then(chat_inf, |
|
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, |
|
top_p, rep_p], chat_b) |
|
go = btn.click(check_rand, [rand, seed], seed).then(chat_inf, |
|
[sys_inp, inp, chat_b, client_choice, seed, temp, tokens, top_p, |
|
rep_p], chat_b) |
|
stop_btn.click(None, None, None, cancels=[go, chat_sub]) |
|
clear_btn.click(clear_fn, None, [chat_b]) |
|
app.queue(default_concurrency_limit=10).launch() |
|
|