Spaces:
Running
Running
oscarwang2
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,38 @@
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
import requests
|
3 |
-
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
|
|
|
|
|
|
|
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
# Define the SearXNG instance URL
|
9 |
SEARXNG_INSTANCE_URL = "https://oscarwang2-searxng.hf.space/search"
|
10 |
|
11 |
-
# Load the educational content classifier
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def classify_educational_quality(text):
|
16 |
"""
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
from flask import Flask, request, jsonify
|
4 |
import requests
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
6 |
|
7 |
+
# Set cache directory explicitly
|
8 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
|
9 |
+
os.makedirs('/tmp/huggingface_cache', exist_ok=True)
|
10 |
+
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
# Define the SearXNG instance URL
|
14 |
SEARXNG_INSTANCE_URL = "https://oscarwang2-searxng.hf.space/search"
|
15 |
|
16 |
+
# Load the educational content classifier with explicit cache directory
|
17 |
+
def load_model_with_retry(max_retries=3):
|
18 |
+
for attempt in range(max_retries):
|
19 |
+
try:
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
"HuggingFaceTB/fineweb-edu-classifier",
|
22 |
+
cache_dir='/tmp/huggingface_cache'
|
23 |
+
)
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
25 |
+
"HuggingFaceTB/fineweb-edu-classifier",
|
26 |
+
cache_dir='/tmp/huggingface_cache'
|
27 |
+
)
|
28 |
+
return tokenizer, model
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Model loading attempt {attempt + 1} failed: {e}")
|
31 |
+
if attempt == max_retries - 1:
|
32 |
+
raise
|
33 |
+
|
34 |
+
# Load models at startup
|
35 |
+
tokenizer, model = load_model_with_retry()
|
36 |
|
37 |
def classify_educational_quality(text):
|
38 |
"""
|