osbm's picture
Upload 9 files
3953219
raw
history blame
12.8 kB
import torch
import ipywidgets
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
from itertools import chain, islice
from ipywidgets import interactive, widgets
def _create_label(text:str)->ipywidgets.widgets.Label:
"Create label widget"
label = widgets.Label(
text,
layout=widgets.Layout(
width='100%',
display='flex',
justify_content="center"
)
)
return label
def _create_slider(
slider_min: int,
slider_max: int,
value: int,
step: int=1,
description:str ='',
continuous_update: bool=True,
readout: bool=False,
slider_type: str='IntSlider',
**kwargs)->ipywidgets.widgets:
"Create slider widget"
slider = getattr(widgets, slider_type)(
min=slider_min,
max=slider_max,
step=step,
value=value,
description=description,
continuous_update=continuous_update,
readout = readout,
layout=widgets.Layout(width='99%', min_width='200px'),
style={'description_width': 'initial'},
**kwargs
)
return slider
def _create_button(description:str)->ipywidgets.widgets.Button:
"Create button widget"
button = widgets.Button(
description=description,
layout=widgets.Layout(
width='95%',
margin='5px 5px'
)
)
return button
def _create_togglebutton(description: str,
value: int,
**kwargs)->ipywidgets.widgets.Button:
"Create toggle button widget"
button = widgets.ToggleButton(
description=description,
value = value,
layout=widgets.Layout(
width='95%',
margin='5px 5px'
), **kwargs
)
return button
class BasicViewer():
""" Base class for viewing TensorDicom3D objects.
Args:
x: main image object to view as rank 3 tensor
y: either a segmentation mask as as rank 3 tensor or a label as str.
prediction: a class predicton as str
description: description of the whole image
figsize: size of image, passed as plotting argument
cmap: colormap for the image
Returns:
Instance of BasicViewer
"""
def __init__(self, x:torch.Tensor, y=None, prediction:str=None, description: str=None,
figsize=(3, 3), cmap:str='bone'):
assert x.ndim == 3, f"x.ndim needs to be equal to but is {x.ndim}"
if isinstance(y, torch.Tensor):
assert x.shape == y.shape, f"Shapes of x {x.shape} and y {y.shape} do not match"
self.x=x
self.y=y
self.prediction=prediction
self.description=description
self.figsize=figsize
self.cmap=cmap
self.with_mask = isinstance(y, torch.Tensor)
self.slice_range = (1, len(x)) # len(x) == im.shape[0]
def _plot_slice(self, im_slice, with_mask, px_range):
"Plot slice of image"
fig, ax = plt.subplots(1, 1, figsize=self.figsize)
ax.imshow(self.x[im_slice-1, :, :].clip(*px_range), cmap=self.cmap)
if isinstance(self.y, (torch.Tensor)) and with_mask:
ax.imshow(self.y[im_slice-1, :, :], cmap='jet', alpha = 0.25)
plt.axis('off')
ax.set_xticks([])
ax.set_yticks([])
plt.show()
def _create_image_box(self, figsize):
"Create widget items, order them in item_box and generate view box"
items = []
if self.description: plot_description = _create_label(self.description)
if isinstance(self.y, str):
label = f'{self.y} | {self.prediction}' if self.prediction else self.y
if self.prediction:
font_color = 'green' if self.y == self.prediction else 'red'
y_label = _create_label(r'\(\color{' + font_color + '} {' + label + '}\)')
else:
y_label = _create_label(label)
else: y_label = _create_label(' ')
slice_slider = _create_slider(
slider_min = min(self.slice_range),
slider_max = max(self.slice_range),
value = max(self.slice_range)//2,
readout = True)
toggle_mask_button = _create_togglebutton('Show Mask', True)
range_slider = _create_slider(
slider_min = self.x.min().numpy(),
slider_max = self.x.max().numpy(),
value = [self.x.min().numpy(), self.x.max().numpy()],
slider_type = 'FloatRangeSlider' if torch.is_floating_point(self.x) else 'IntRandSlider',
step = 0.01 if torch.is_floating_point(self.x) else 1,
readout=True)
image_output = widgets.interactive_output(
f = self._plot_slice,
controls = {'im_slice': slice_slider,
'with_mask': toggle_mask_button,
'px_range': range_slider})
image_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
image_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
if self.description: items.append(plot_description)
items.append(y_label)
items.append(range_slider)
items.append(image_output)
if isinstance(self.y, torch.Tensor):
slice_slider = widgets.HBox([slice_slider, toggle_mask_button])
items.append(slice_slider)
image_box=widgets.VBox(
items,
layout = widgets.Layout(
border = 'none',
margin = '10px 5px 0px 0px',
padding = '5px'))
return image_box
def _generate_views(self):
image_box = self._create_image_box(self.figsize)
self.box = widgets.HBox(children=[image_box])
@property
def image_box(self):
return self._create_image_box(self.figsize)
def show(self):
self._generate_views()
plt.style.use('default')
display(self.box)
class DicomExplorer(BasicViewer):
""" DICOM viewer for basic image analysis inside iPython notebooks.
Can display a single 3D volume together with a segmentation mask, a histogram
of voxel/pixel values and some summary statistics.
Allows simple windowing by clipping the pixel/voxel values to a region, which
can be manually specified.
"""
vbox_layout = widgets.Layout(
margin = '10px 5px 5px 5px',
padding = '5px',
display='flex',
flex_flow='column',
align_items='center',
min_width = '250px')
def _plot_hist(self, px_range):
x = self.x.numpy().flatten()
fig, ax = plt.subplots(figsize=self.figsize)
N, bins, patches = plt.hist(x, 100, color='grey')
lwr = int(px_range[0] * 100/max(x))
upr = int(np.ceil(px_range[1] * 100/max(x)))
for i in range(0,lwr):
patches[i].set_facecolor('grey' if lwr > 0 else 'darkblue')
for i in range(lwr, upr):
patches[i].set_facecolor('darkblue')
for i in range(upr,100):
patches[i].set_facecolor('grey' if upr < 100 else 'darkblue')
plt.show()
def _image_summary(self, px_range):
x = self.x.clip(*px_range)
diffs = x - x.mean()
var = torch.mean(torch.pow(diffs, 2.0))
std = torch.pow(var, 0.5)
zscores = diffs / std
skews = torch.mean(torch.pow(zscores, 3.0))
kurt = torch.mean(torch.pow(zscores, 4.0)) - 3.0
table = f'Statistics:\n' + \
f' Mean px value: {x.mean()} \n' + \
f' Std of px values: {x.std()} \n' + \
f' Min px value: {x.min()} \n' + \
f' Max px value: {x.max()} \n' + \
f' Median px value: {x.median()} \n' + \
f' Skewness: {skews} \n' + \
f' Kurtosis: {kurt} \n\n' + \
f'Tensor properties \n' + \
f' Tensor shape: {tuple(x.shape)}\n' + \
f' Tensor dtype: {x.dtype}'
print(table)
def _generate_views(self):
slice_slider = _create_slider(
slider_min = min(self.slice_range),
slider_max = max(self.slice_range),
value = max(self.slice_range)//2,
readout = True)
toggle_mask_button = _create_togglebutton('Show Mask', True)
range_slider = _create_slider(
slider_min = self.x.min().numpy(),
slider_max = self.x.max().numpy(),
value = [self.x.min().numpy(), self.x.max().numpy()],
continuous_update=False,
slider_type = 'FloatRangeSlider' if torch.is_floating_point(self.x) else 'IntRandSlider',
step = 0.01 if torch.is_floating_point(self.x) else 1)
image_output = widgets.interactive_output(
f = self._plot_slice,
controls = {'im_slice': slice_slider,
'with_mask': toggle_mask_button,
'px_range': range_slider})
image_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
image_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
if isinstance(self.y, torch.Tensor):
slice_slider = widgets.HBox([slice_slider, toggle_mask_button])
hist_output = widgets.interactive_output(
f = self._plot_hist,
controls = {'px_range': range_slider})
hist_output.layout.height = f'{self.figsize[0]/1.2}in' # suppress flickering
hist_output.layout.width = f'{self.figsize[1]/1.2}in' # suppress flickering
toggle_mask_button = _create_togglebutton('Show Mask', True)
table_output = widgets.interactive_output(
f = self._image_summary,
controls = {'px_range': range_slider})
table_box = widgets.VBox([table_output], layout=self.vbox_layout)
hist_box = widgets.VBox(
[hist_output, range_slider],
layout=self.vbox_layout)
image_box = widgets.VBox(
[image_output, slice_slider],
layout=self.vbox_layout)
self.box = widgets.HBox(
[image_box, hist_box, table_box],
layout = widgets.Layout(
border = 'solid 1px lightgrey',
margin = '10px 5px 0px 0px',
padding = '5px',
width = f'{self.figsize[1]*2 + 3}in'))
class ListViewer(object):
""" Display multipple images with their masks or labels/predictions.
Arguments:
x (tuple, list): Tensor objects to view
y (tuple, list): Tensor objects (in case of segmentation task) or class labels as string.
predictions (str): Class predictions
cmap: colormap for display of `x`
max_n: maximum number of items to display
"""
def __init__(self, x:(list, tuple), y=None, prediction:str=None, description: str=None,
figsize=(4, 4), cmap:str='bone', max_n = 9):
self.slice_range = (1, len(x))
x = x[0:max_n]
if y: y = y[0:max_n]
self.x=x
self.y=y
self.prediction=prediction
self.description=description
self.figsize=figsize
self.cmap=cmap
self.max_n=max_n
def _generate_views(self):
n_images = len(self.x)
image_grid, image_list = [], []
for i in range(0, n_images):
image = self.x[i]
mask = self.y[i] if isinstance(self.y, list) else None
pred = self.prediction[i] if self.prediction else None
image_list.append(
BasicViewer(
x = image,
y = mask,
prediction = pred,
figsize = self.figsize,
cmap = self.cmap)
.image_box)
if (i+1) % np.ceil(np.sqrt(n_images)) == 0 or i == n_images - 1:
image_grid.append(widgets.HBox(image_list))
image_list = []
self.box = widgets.VBox(children=image_grid)
def show(self):
self._generate_views()
plt.style.use('default')
display(self.box)