osbm's picture
Update app.py
663ec2b
raw
history blame
865 Bytes
import streamlit as st
import huggingface_hub as hf_hub
import monai
import os
import zipfile
hf_hub.login(token=st.secrets["HF_TOKEN"])
with st.spinner("Downloading Dataset"):
data_path = hf_hub.hf_hub_download(repo_id="osbm/prostate158", filename="data.zip", repo_type="dataset")
st.write(data_path)
with st.spinner("Unzipping..."):
with zipfile.ZipFile(data_path, 'r') as zip_ref:
zip_ref.extractall(".")
# st.write(os.listdir(os.getcwd()))
# st.write(os.getcwd())
model = monai.networks.nets.UNet(
in_channels=1,
out_channels=3,
spatial_dims=3,
channels=[16, 32, 64, 128, 256, 512],
strides=[2, 2, 2, 2, 2],
num_res_units=4,
act="PRELU",
norm="BATCH",
dropout=0.15,
)
# load this model using anatomy.pt
model.load_state_dict(torch.load('anatomy.pt', map_location=torch.device('cpu')))
print(model)