Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
@@ -86,17 +86,17 @@ class ProstateSegmentationAlgorithm(SegmentationAlgorithm):
|
|
86 |
|
87 |
# input / output paths for algorithm
|
88 |
self.input_dirs = [
|
89 |
-
"
|
90 |
]
|
91 |
self.scan_paths = []
|
92 |
-
self.prostate_segmentation_path_pz = Path("
|
93 |
-
self.prostate_segmentation_path_tz = Path("
|
94 |
-
self.prostate_segmentation_path = Path("
|
95 |
|
96 |
# input / output paths for nnUNet
|
97 |
-
self.nnunet_inp_dir = Path("
|
98 |
-
self.nnunet_out_dir = Path("
|
99 |
-
self.nnunet_results = Path("
|
100 |
|
101 |
# ensure required folders exist
|
102 |
self.nnunet_inp_dir.mkdir(exist_ok=True, parents=True)
|
@@ -246,16 +246,24 @@ class ProstateSegmentationAlgorithm(SegmentationAlgorithm):
|
|
246 |
def predict(input_file):
|
247 |
print("Making prediction")
|
248 |
image = sitk.ReadImage(input_file)
|
249 |
-
|
|
|
250 |
ProstateSegmentationAlgorithm().process()
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
print("Starting interface")
|
254 |
demo = gr.Interface(
|
255 |
fn=predict,
|
256 |
-
inputs=gr.File(file_count="single", file_types=[".mha", ".nii.gz", ".nii"]),
|
257 |
outputs=(
|
258 |
-
gr.File()
|
|
|
|
|
259 |
),
|
260 |
cache_examples=False,
|
261 |
# outputs=gr.Label(num_top_classes=3),
|
|
|
86 |
|
87 |
# input / output paths for algorithm
|
88 |
self.input_dirs = [
|
89 |
+
"./input/images/transverse-t2-prostate-mri"
|
90 |
]
|
91 |
self.scan_paths = []
|
92 |
+
self.prostate_segmentation_path_pz = Path("./output/images/softmax-prostate-peripheral-zone-segmentation/prostate_gland_sm_pz.mha")
|
93 |
+
self.prostate_segmentation_path_tz = Path("./output/images/softmax-prostate-central-gland-segmentation/prostate_gland_sm_tz.mha")
|
94 |
+
self.prostate_segmentation_path = Path("./output/images/prostate-zonal-segmentation/prostate_gland.mha")
|
95 |
|
96 |
# input / output paths for nnUNet
|
97 |
+
self.nnunet_inp_dir = Path("./nnunet/input")
|
98 |
+
self.nnunet_out_dir = Path("./nnunet/output")
|
99 |
+
self.nnunet_results = Path("./results")
|
100 |
|
101 |
# ensure required folders exist
|
102 |
self.nnunet_inp_dir.mkdir(exist_ok=True, parents=True)
|
|
|
246 |
def predict(input_file):
|
247 |
print("Making prediction")
|
248 |
image = sitk.ReadImage(input_file)
|
249 |
+
sitk.WriteImage(image, "./input/images/transverse-t2-prostate-mri/1009_2222_t2w.mha")
|
250 |
+
|
251 |
ProstateSegmentationAlgorithm().process()
|
252 |
+
|
253 |
+
|
254 |
+
return (
|
255 |
+
"./output/images/softmax-prostate-peripheral-zone-segmentation/prostate_gland_sm_pz.mha",
|
256 |
+
"./output/images/softmax-prostate-central-gland-segmentation/prostate_gland_sm_tz.mha",
|
257 |
+
"./output/images/prostate-zonal-segmentation/prostate_gland.mha"
|
258 |
|
259 |
print("Starting interface")
|
260 |
demo = gr.Interface(
|
261 |
fn=predict,
|
262 |
+
inputs=gr.File(label="input T2 image (3d)", file_count="single", file_types=[".mha", ".nii.gz", ".nii"]),
|
263 |
outputs=(
|
264 |
+
gr.File(label="softmax-prostate-peripheral-zone-segmentation/prostate_gland_sm_pz"),
|
265 |
+
gr.File(label="softmax-prostate-central-gland-segmentation/prostate_gland_sm_tz"),
|
266 |
+
gr.File(label="prostate-zonal-segmentation/prostate_gland"),
|
267 |
),
|
268 |
cache_examples=False,
|
269 |
# outputs=gr.Label(num_top_classes=3),
|