Spaces:
Sleeping
Sleeping
Create nnUNetTrainerV2_Loss_FL_and_CE.py
Browse files
nnUNetTrainerV2_Loss_FL_and_CE.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2
|
18 |
+
from nnunet.training.loss_functions.crossentropy import RobustCrossEntropyLoss
|
19 |
+
from nnunet.training.network_training.nnUNet_variants.loss_function.nnUNetTrainerV2_focalLoss import FocalLoss
|
20 |
+
# TODO: replace FocalLoss by fixed implemetation (and set smooth=0 in that one?)
|
21 |
+
|
22 |
+
|
23 |
+
class FL_and_CE_loss(nn.Module):
|
24 |
+
def __init__(self, fl_kwargs=None, ce_kwargs=None, alpha=0.5, aggregate="sum"):
|
25 |
+
super(FL_and_CE_loss, self).__init__()
|
26 |
+
if fl_kwargs is None:
|
27 |
+
fl_kwargs = {}
|
28 |
+
if ce_kwargs is None:
|
29 |
+
ce_kwargs = {}
|
30 |
+
|
31 |
+
self.aggregate = aggregate
|
32 |
+
self.fl = FocalLoss(apply_nonlin=nn.Softmax(), **fl_kwargs)
|
33 |
+
self.ce = RobustCrossEntropyLoss(**ce_kwargs)
|
34 |
+
self.alpha = alpha
|
35 |
+
|
36 |
+
def forward(self, net_output, target):
|
37 |
+
fl_loss = self.fl(net_output, target)
|
38 |
+
ce_loss = self.ce(net_output, target)
|
39 |
+
if self.aggregate == "sum":
|
40 |
+
result = self.alpha*fl_loss + (1-self.alpha)*ce_loss
|
41 |
+
else:
|
42 |
+
raise NotImplementedError("nah son")
|
43 |
+
return result
|
44 |
+
|
45 |
+
|
46 |
+
class nnUNetTrainerV2_Loss_FL_and_CE_checkpoints(nnUNetTrainerV2):
|
47 |
+
"""
|
48 |
+
Set loss to FL + CE and set checkpoints
|
49 |
+
"""
|
50 |
+
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
|
51 |
+
unpack_data=True, deterministic=True, fp16=False):
|
52 |
+
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
|
53 |
+
deterministic, fp16)
|
54 |
+
self.loss = FL_and_CE_loss(alpha=0.5)
|
55 |
+
self.save_latest_only = False
|
56 |
+
|
57 |
+
|
58 |
+
class nnUNetTrainerV2_Loss_FL_and_CE_checkpoints2(nnUNetTrainerV2_Loss_FL_and_CE_checkpoints):
|
59 |
+
"""
|
60 |
+
Each run is stored in a folder with the training class name in it. This simply creates a new folder,
|
61 |
+
to allow investigating the variability between restarts.
|
62 |
+
"""
|
63 |
+
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
|
64 |
+
unpack_data=True, deterministic=True, fp16=False):
|
65 |
+
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
|
66 |
+
deterministic, fp16)
|
67 |
+
|
68 |
+
|
69 |
+
class nnUNetTrainerV2_Loss_FL_and_CE_checkpoints3(nnUNetTrainerV2_Loss_FL_and_CE_checkpoints):
|
70 |
+
"""
|
71 |
+
Each run is stored in a folder with the training class name in it. This simply creates a new folder,
|
72 |
+
to allow investigating the variability between restarts.
|
73 |
+
"""
|
74 |
+
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
|
75 |
+
unpack_data=True, deterministic=True, fp16=False):
|
76 |
+
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
|
77 |
+
deterministic, fp16)
|