Spaces:
Sleeping
Sleeping
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2 | |
class FocalLoss(nn.Module): | |
""" | |
copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py | |
This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in | |
'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)' | |
Focal_Loss= -1*alpha*(1-pt)*log(pt) | |
:param num_class: | |
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion | |
:param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more | |
focus on hard misclassified example | |
:param smooth: (float,double) smooth value when cross entropy | |
:param balance_index: (int) balance class index, should be specific when alpha is float | |
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch. | |
""" | |
def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True): | |
super(FocalLoss, self).__init__() | |
self.apply_nonlin = apply_nonlin | |
self.alpha = alpha | |
self.gamma = gamma | |
self.balance_index = balance_index | |
self.smooth = smooth | |
self.size_average = size_average | |
if self.smooth is not None: | |
if self.smooth < 0 or self.smooth > 1.0: | |
raise ValueError('smooth value should be in [0,1]') | |
def forward(self, logit, target): | |
if self.apply_nonlin is not None: | |
logit = self.apply_nonlin(logit) | |
num_class = logit.shape[1] | |
if logit.dim() > 2: | |
# flatten spatial dimensions N,C,d1,d2 -> N,C,m (m=d1*d2*...) | |
logit = logit.view(logit.size(0), logit.size(1), -1) | |
logit = logit.permute(0, 2, 1).contiguous() | |
logit = logit.view(-1, logit.size(-1)) | |
target = torch.squeeze(target, 1) | |
target = target.view(-1, 1) | |
# print(logit.shape, target.shape) | |
alpha = self.alpha | |
if alpha is None: | |
alpha = torch.ones(num_class, 1) | |
elif isinstance(alpha, (list, np.ndarray)): | |
assert len(alpha) == num_class | |
alpha = torch.FloatTensor(alpha).view(num_class, 1) | |
alpha = alpha / alpha.sum() | |
elif isinstance(alpha, float): | |
alpha = torch.ones(num_class, 1) | |
alpha = alpha * (1 - self.alpha) | |
alpha[self.balance_index] = self.alpha | |
else: | |
raise TypeError(f'Unsupported alpha type: {type(alpha)}') | |
if alpha.device != logit.device: | |
alpha = alpha.to(logit.device) | |
idx = target.cpu().long() | |
one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() | |
one_hot_key = one_hot_key.scatter_(1, idx, 1) | |
if one_hot_key.device != logit.device: | |
one_hot_key = one_hot_key.to(logit.device) | |
if self.smooth: | |
one_hot_key = torch.clamp( | |
one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth) | |
pt = (one_hot_key * logit).sum(1) + self.smooth | |
logpt = pt.log() | |
gamma = self.gamma | |
alpha = alpha[idx] | |
alpha = torch.squeeze(alpha) | |
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt | |
if self.size_average: | |
loss = loss.mean() | |
else: | |
loss = loss.sum() | |
return loss | |
class nnUNetTrainerV2_focalLossAlpha75(nnUNetTrainerV2): | |
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, | |
unpack_data=True, deterministic=True, fp16=False): | |
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, | |
deterministic, fp16) | |
print("Setting up FocalLoss(alpha=[0.75, 0.25], apply_nonlin=nn.Softmax())") | |
self.loss = FocalLoss(alpha=[0.75, 0.25], apply_nonlin=nn.Softmax()) | |
class nnUNetTrainerV2_focalLossAlpha75_checkpoints(nnUNetTrainerV2_focalLossAlpha75): | |
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, | |
unpack_data=True, deterministic=True, fp16=False): | |
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, | |
deterministic, fp16) | |
print("Saving checkpoint every 50th epoch") | |
self.save_latest_only = False | |
class nnUNetTrainerV2_focalLossAlpha75_checkpoints2(nnUNetTrainerV2_focalLossAlpha75_checkpoints): | |
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, | |
unpack_data=True, deterministic=True, fp16=False): | |
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, | |
deterministic, fp16) | |
pass # this is just to get a new Trainer directory | |
class nnUNetTrainerV2_focalLossAlpha75_checkpoints3(nnUNetTrainerV2_focalLossAlpha75_checkpoints): | |
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None, | |
unpack_data=True, deterministic=True, fp16=False): | |
super().__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data, | |
deterministic, fp16) | |
pass # this is just to get a new Trainer directory |