test_gradio / app.py
osanseviero's picture
Create app.py
da683e2
raw
history blame
478 Bytes
import gradio as gr
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
def predict(text):
return pipe(text)[0]["translation_text"]
title = "Interactive demo: Helsinki-NLP English to Spanish Translation"
iface = gr.Interface(
fn=predict,
inputs=[gr.inputs.Textbox(label="text", lines=3)],
outputs='text',
title=title,
examples=[["Hello! My name is Omar"], ["I like this workshop"]]
)
iface.launch(debug=True)