Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
import torch | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
pipe_flan = pipeline("text2text-generation", model="google/flan-t5-large", device="cuda:0") | |
pipe_vanilla = pipeline("text2text-generation", model="t5-large", device="cuda:0") | |
examples = [ | |
["Please answer to the following question. Who is going to be the next Ballon d'or?"], | |
["Q: Can Barack Obama have a conversation with George Washington? Give the rationale before answering."], | |
["Please answer the following question: What is the boiling point of water?"], | |
["Translate to German: How old are you?"], | |
["Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?"], | |
["Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?"] | |
] | |
title = "Flan T5 and Vanilla T5" | |
description = "This demo compares [T5-large](https://huggingface.co/t5-large) and [Flan-T5-large](https://huggingface.co/ybelkada/flan-t5-large). Note that T5 expects a very specific format of the prompts, so the examples below are not necessarily the best prompts to compare." | |
def inference(text): | |
output_flan = pipe_flan(text, max_length=100)[0]["generated_text"] | |
output_vanilla = pipe_vanilla(text, max_length=100)[0]["generated_text"] | |
return [output_flan, output_vanilla] | |
io = gr.Interface( | |
inference, | |
gr.Textbox(lines=3), | |
outputs=[ | |
gr.Textbox(lines=3, label="Flan T5"), | |
gr.Textbox(lines=3, label="T5") | |
], | |
title=title, | |
description=description, | |
examples=examples | |
) | |
io.launch() |