Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tokenization classes.""" | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import collections | |
| import logging | |
| import os | |
| import unicodedata | |
| from io import open | |
| from .tokenization_utils import PreTrainedTokenizer | |
| logger = logging.getLogger(__name__) | |
| VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} | |
| PRETRAINED_VOCAB_FILES_MAP = { | |
| 'vocab_file': | |
| { | |
| 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", | |
| 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", | |
| 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", | |
| 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", | |
| 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", | |
| 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", | |
| 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", | |
| 'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt", | |
| 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt", | |
| 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt", | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt", | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt", | |
| 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt", | |
| } | |
| } | |
| PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
| 'bert-base-uncased': 512, | |
| 'bert-large-uncased': 512, | |
| 'bert-base-cased': 512, | |
| 'bert-large-cased': 512, | |
| 'bert-base-multilingual-uncased': 512, | |
| 'bert-base-multilingual-cased': 512, | |
| 'bert-base-chinese': 512, | |
| 'bert-base-german-cased': 512, | |
| 'bert-large-uncased-whole-word-masking': 512, | |
| 'bert-large-cased-whole-word-masking': 512, | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': 512, | |
| 'bert-base-cased-finetuned-mrpc': 512, | |
| } | |
| PRETRAINED_INIT_CONFIGURATION = { | |
| 'bert-base-uncased': {'do_lower_case': True}, | |
| 'bert-large-uncased': {'do_lower_case': True}, | |
| 'bert-base-cased': {'do_lower_case': False}, | |
| 'bert-large-cased': {'do_lower_case': False}, | |
| 'bert-base-multilingual-uncased': {'do_lower_case': True}, | |
| 'bert-base-multilingual-cased': {'do_lower_case': False}, | |
| 'bert-base-chinese': {'do_lower_case': False}, | |
| 'bert-base-german-cased': {'do_lower_case': False}, | |
| 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, | |
| 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, | |
| 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, | |
| } | |
| def load_vocab(vocab_file): | |
| """Loads a vocabulary file into a dictionary.""" | |
| vocab = collections.OrderedDict() | |
| with open(vocab_file, "r", encoding="utf-8") as reader: | |
| tokens = reader.readlines() | |
| for index, token in enumerate(tokens): | |
| token = token.rstrip('\n') | |
| vocab[token] = index | |
| return vocab | |
| def whitespace_tokenize(text): | |
| """Runs basic whitespace cleaning and splitting on a piece of text.""" | |
| text = text.strip() | |
| if not text: | |
| return [] | |
| tokens = text.split() | |
| return tokens | |
| class BertTokenizer(PreTrainedTokenizer): | |
| r""" | |
| Constructs a BertTokenizer. | |
| :class:`~pytorch_transformers.BertTokenizer` runs end-to-end tokenization: punctuation splitting + wordpiece | |
| Args: | |
| vocab_file: Path to a one-wordpiece-per-line vocabulary file | |
| do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False | |
| do_basic_tokenize: Whether to do basic tokenization before wordpiece. | |
| max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the | |
| minimum of this value (if specified) and the underlying BERT model's sequence length. | |
| never_split: List of tokens which will never be split during tokenization. Only has an effect when | |
| do_wordpiece_only=False | |
| """ | |
| vocab_files_names = VOCAB_FILES_NAMES | |
| pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | |
| pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION | |
| max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
| def __init__(self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, | |
| unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", | |
| mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs): | |
| """Constructs a BertTokenizer. | |
| Args: | |
| **vocab_file**: Path to a one-wordpiece-per-line vocabulary file | |
| **do_lower_case**: (`optional`) boolean (default True) | |
| Whether to lower case the input | |
| Only has an effect when do_basic_tokenize=True | |
| **do_basic_tokenize**: (`optional`) boolean (default True) | |
| Whether to do basic tokenization before wordpiece. | |
| **never_split**: (`optional`) list of string | |
| List of tokens which will never be split during tokenization. | |
| Only has an effect when do_basic_tokenize=True | |
| **tokenize_chinese_chars**: (`optional`) boolean (default True) | |
| Whether to tokenize Chinese characters. | |
| This should likely be deactivated for Japanese: | |
| see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 | |
| """ | |
| super(BertTokenizer, self).__init__(unk_token=unk_token, sep_token=sep_token, | |
| pad_token=pad_token, cls_token=cls_token, | |
| mask_token=mask_token, **kwargs) | |
| self.max_len_single_sentence = self.max_len - 2 # take into account special tokens | |
| self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens | |
| if not os.path.isfile(vocab_file): | |
| raise ValueError( | |
| "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " | |
| "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) | |
| self.vocab = load_vocab(vocab_file) | |
| self.ids_to_tokens = collections.OrderedDict( | |
| [(ids, tok) for tok, ids in self.vocab.items()]) | |
| self.do_basic_tokenize = do_basic_tokenize | |
| if do_basic_tokenize: | |
| self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case, | |
| never_split=never_split, | |
| tokenize_chinese_chars=tokenize_chinese_chars) | |
| self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) | |
| def vocab_size(self): | |
| return len(self.vocab) | |
| def _tokenize(self, text): | |
| split_tokens = [] | |
| if self.do_basic_tokenize: | |
| for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): | |
| for sub_token in self.wordpiece_tokenizer.tokenize(token): | |
| split_tokens.append(sub_token) | |
| else: | |
| split_tokens = self.wordpiece_tokenizer.tokenize(text) | |
| return split_tokens | |
| def _convert_token_to_id(self, token): | |
| """ Converts a token (str/unicode) in an id using the vocab. """ | |
| return self.vocab.get(token, self.vocab.get(self.unk_token)) | |
| def _convert_id_to_token(self, index): | |
| """Converts an index (integer) in a token (string/unicode) using the vocab.""" | |
| return self.ids_to_tokens.get(index, self.unk_token) | |
| def convert_tokens_to_string(self, tokens): | |
| """ Converts a sequence of tokens (string) in a single string. """ | |
| out_string = ' '.join(tokens).replace(' ##', '').strip() | |
| return out_string | |
| def add_special_tokens_single_sentence(self, token_ids): | |
| """ | |
| Adds special tokens to the a sequence for sequence classification tasks. | |
| A BERT sequence has the following format: [CLS] X [SEP] | |
| """ | |
| return [self.cls_token_id] + token_ids + [self.sep_token_id] | |
| def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1): | |
| """ | |
| Adds special tokens to a sequence pair for sequence classification tasks. | |
| A BERT sequence pair has the following format: [CLS] A [SEP] B [SEP] | |
| """ | |
| sep = [self.sep_token_id] | |
| cls = [self.cls_token_id] | |
| return cls + token_ids_0 + sep + token_ids_1 + sep | |
| def save_vocabulary(self, vocab_path): | |
| """Save the tokenizer vocabulary to a directory or file.""" | |
| index = 0 | |
| if os.path.isdir(vocab_path): | |
| vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES['vocab_file']) | |
| else: | |
| vocab_file = vocab_path | |
| with open(vocab_file, "w", encoding="utf-8") as writer: | |
| for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): | |
| if index != token_index: | |
| logger.warning("Saving vocabulary to {}: vocabulary indices are not consecutive." | |
| " Please check that the vocabulary is not corrupted!".format(vocab_file)) | |
| index = token_index | |
| writer.write(token + u'\n') | |
| index += 1 | |
| return (vocab_file,) | |
| class BasicTokenizer(object): | |
| """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" | |
| def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True): | |
| """ Constructs a BasicTokenizer. | |
| Args: | |
| **do_lower_case**: Whether to lower case the input. | |
| **never_split**: (`optional`) list of str | |
| Kept for backward compatibility purposes. | |
| Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) | |
| List of token not to split. | |
| **tokenize_chinese_chars**: (`optional`) boolean (default True) | |
| Whether to tokenize Chinese characters. | |
| This should likely be deactivated for Japanese: | |
| see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 | |
| """ | |
| if never_split is None: | |
| never_split = [] | |
| self.do_lower_case = do_lower_case | |
| self.never_split = never_split | |
| self.tokenize_chinese_chars = tokenize_chinese_chars | |
| def tokenize(self, text, never_split=None): | |
| """ Basic Tokenization of a piece of text. | |
| Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. | |
| Args: | |
| **never_split**: (`optional`) list of str | |
| Kept for backward compatibility purposes. | |
| Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) | |
| List of token not to split. | |
| """ | |
| never_split = self.never_split + (never_split if never_split is not None else []) | |
| text = self._clean_text(text) | |
| # This was added on November 1st, 2018 for the multilingual and Chinese | |
| # models. This is also applied to the English models now, but it doesn't | |
| # matter since the English models were not trained on any Chinese data | |
| # and generally don't have any Chinese data in them (there are Chinese | |
| # characters in the vocabulary because Wikipedia does have some Chinese | |
| # words in the English Wikipedia.). | |
| if self.tokenize_chinese_chars: | |
| text = self._tokenize_chinese_chars(text) | |
| orig_tokens = whitespace_tokenize(text) | |
| split_tokens = [] | |
| for token in orig_tokens: | |
| if self.do_lower_case and token not in never_split: | |
| token = token.lower() | |
| token = self._run_strip_accents(token) | |
| split_tokens.extend(self._run_split_on_punc(token)) | |
| output_tokens = whitespace_tokenize(" ".join(split_tokens)) | |
| return output_tokens | |
| def _run_strip_accents(self, text): | |
| """Strips accents from a piece of text.""" | |
| text = unicodedata.normalize("NFD", text) | |
| output = [] | |
| for char in text: | |
| cat = unicodedata.category(char) | |
| if cat == "Mn": | |
| continue | |
| output.append(char) | |
| return "".join(output) | |
| def _run_split_on_punc(self, text, never_split=None): | |
| """Splits punctuation on a piece of text.""" | |
| if never_split is not None and text in never_split: | |
| return [text] | |
| chars = list(text) | |
| i = 0 | |
| start_new_word = True | |
| output = [] | |
| while i < len(chars): | |
| char = chars[i] | |
| if _is_punctuation(char): | |
| output.append([char]) | |
| start_new_word = True | |
| else: | |
| if start_new_word: | |
| output.append([]) | |
| start_new_word = False | |
| output[-1].append(char) | |
| i += 1 | |
| return ["".join(x) for x in output] | |
| def _tokenize_chinese_chars(self, text): | |
| """Adds whitespace around any CJK character.""" | |
| output = [] | |
| for char in text: | |
| cp = ord(char) | |
| if self._is_chinese_char(cp): | |
| output.append(" ") | |
| output.append(char) | |
| output.append(" ") | |
| else: | |
| output.append(char) | |
| return "".join(output) | |
| def _is_chinese_char(self, cp): | |
| """Checks whether CP is the codepoint of a CJK character.""" | |
| # This defines a "chinese character" as anything in the CJK Unicode block: | |
| # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) | |
| # | |
| # Note that the CJK Unicode block is NOT all Japanese and Korean characters, | |
| # despite its name. The modern Korean Hangul alphabet is a different block, | |
| # as is Japanese Hiragana and Katakana. Those alphabets are used to write | |
| # space-separated words, so they are not treated specially and handled | |
| # like the all of the other languages. | |
| if ((cp >= 0x4E00 and cp <= 0x9FFF) or # | |
| (cp >= 0x3400 and cp <= 0x4DBF) or # | |
| (cp >= 0x20000 and cp <= 0x2A6DF) or # | |
| (cp >= 0x2A700 and cp <= 0x2B73F) or # | |
| (cp >= 0x2B740 and cp <= 0x2B81F) or # | |
| (cp >= 0x2B820 and cp <= 0x2CEAF) or | |
| (cp >= 0xF900 and cp <= 0xFAFF) or # | |
| (cp >= 0x2F800 and cp <= 0x2FA1F)): # | |
| return True | |
| return False | |
| def _clean_text(self, text): | |
| """Performs invalid character removal and whitespace cleanup on text.""" | |
| output = [] | |
| for char in text: | |
| cp = ord(char) | |
| if cp == 0 or cp == 0xfffd or _is_control(char): | |
| continue | |
| if _is_whitespace(char): | |
| output.append(" ") | |
| else: | |
| output.append(char) | |
| return "".join(output) | |
| class WordpieceTokenizer(object): | |
| """Runs WordPiece tokenization.""" | |
| def __init__(self, vocab, unk_token, max_input_chars_per_word=100): | |
| self.vocab = vocab | |
| self.unk_token = unk_token | |
| self.max_input_chars_per_word = max_input_chars_per_word | |
| def tokenize(self, text): | |
| """Tokenizes a piece of text into its word pieces. | |
| This uses a greedy longest-match-first algorithm to perform tokenization | |
| using the given vocabulary. | |
| For example: | |
| input = "unaffable" | |
| output = ["un", "##aff", "##able"] | |
| Args: | |
| text: A single token or whitespace separated tokens. This should have | |
| already been passed through `BasicTokenizer`. | |
| Returns: | |
| A list of wordpiece tokens. | |
| """ | |
| output_tokens = [] | |
| for token in whitespace_tokenize(text): | |
| chars = list(token) | |
| if len(chars) > self.max_input_chars_per_word: | |
| output_tokens.append(self.unk_token) | |
| continue | |
| is_bad = False | |
| start = 0 | |
| sub_tokens = [] | |
| while start < len(chars): | |
| end = len(chars) | |
| cur_substr = None | |
| while start < end: | |
| substr = "".join(chars[start:end]) | |
| if start > 0: | |
| substr = "##" + substr | |
| if substr in self.vocab: | |
| cur_substr = substr | |
| break | |
| end -= 1 | |
| if cur_substr is None: | |
| is_bad = True | |
| break | |
| sub_tokens.append(cur_substr) | |
| start = end | |
| if is_bad: | |
| output_tokens.append(self.unk_token) | |
| else: | |
| output_tokens.extend(sub_tokens) | |
| return output_tokens | |
| def _is_whitespace(char): | |
| """Checks whether `chars` is a whitespace character.""" | |
| # \t, \n, and \r are technically contorl characters but we treat them | |
| # as whitespace since they are generally considered as such. | |
| if char == " " or char == "\t" or char == "\n" or char == "\r": | |
| return True | |
| cat = unicodedata.category(char) | |
| if cat == "Zs": | |
| return True | |
| return False | |
| def _is_control(char): | |
| """Checks whether `chars` is a control character.""" | |
| # These are technically control characters but we count them as whitespace | |
| # characters. | |
| if char == "\t" or char == "\n" or char == "\r": | |
| return False | |
| cat = unicodedata.category(char) | |
| if cat.startswith("C"): | |
| return True | |
| return False | |
| def _is_punctuation(char): | |
| """Checks whether `chars` is a punctuation character.""" | |
| cp = ord(char) | |
| # We treat all non-letter/number ASCII as punctuation. | |
| # Characters such as "^", "$", and "`" are not in the Unicode | |
| # Punctuation class but we treat them as punctuation anyways, for | |
| # consistency. | |
| if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or | |
| (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): | |
| return True | |
| cat = unicodedata.category(char) | |
| if cat.startswith("P"): | |
| return True | |
| return False | |