Spaces:
Runtime error
Runtime error
osanseviero
commited on
Commit
•
4d36fab
1
Parent(s):
168baa1
Add example video
Browse files- .gitattributes +1 -0
- app.py +1 -3
- video.mp4 +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*mp4* filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -8,8 +8,6 @@ import torch.nn as nn
|
|
8 |
import torchvision
|
9 |
import matplotlib.pyplot as plt
|
10 |
|
11 |
-
torch.hub.download_url_to_file('https://viratdata.org/video/VIRAT_S_010204_05_000856_000890.mp4', 'video.mp4')
|
12 |
-
|
13 |
def get_attention_maps(pixel_values, attentions, nh):
|
14 |
threshold = 0.6
|
15 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
@@ -72,7 +70,7 @@ model = ViTModel.from_pretrained("facebook/dino-vits8", add_pooling_layer=False)
|
|
72 |
title = "Interactive demo: DINO"
|
73 |
description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
74 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
|
75 |
-
examples =['video.mp4']
|
76 |
iface = gr.Interface(fn=visualize_attention,
|
77 |
inputs=gr.inputs.Video(gr.inputs.Video()),
|
78 |
outputs=[gr.outputs.Video(label=f'result_video')],
|
|
|
8 |
import torchvision
|
9 |
import matplotlib.pyplot as plt
|
10 |
|
|
|
|
|
11 |
def get_attention_maps(pixel_values, attentions, nh):
|
12 |
threshold = 0.6
|
13 |
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
|
|
70 |
title = "Interactive demo: DINO"
|
71 |
description = "Demo for Facebook AI's DINO, a new method for self-supervised training of Vision Transformers. Using this method, they are capable of segmenting objects within an image without having ever been trained to do so. This can be observed by displaying the self-attention of the heads from the last layer for the [CLS] token query. This demo uses a ViT-S/8 trained with DINO. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
72 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.14294'>Emerging Properties in Self-Supervised Vision Transformers</a> | <a href='https://github.com/facebookresearch/dino'>Github Repo</a></p>"
|
73 |
+
examples =[['video.mp4']]
|
74 |
iface = gr.Interface(fn=visualize_attention,
|
75 |
inputs=gr.inputs.Video(gr.inputs.Video()),
|
76 |
outputs=[gr.outputs.Video(label=f'result_video')],
|
video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddf775baddf4c40f54ba19555c54504c6c5e6adfe0c2cb1c71ad791fcaf122a1
|
3 |
+
size 9935859
|