osamaifti commited on
Commit
f284af1
1 Parent(s): 38095ff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +108 -0
app.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, redirect, url_for, jsonify
2
+ import cv2
3
+ import numpy as np
4
+ from tensorflow.lite.python.interpreter import Interpreter
5
+ import os
6
+
7
+ # Define paths to your model and label files
8
+ MODEL_PATH = "custom_model_lite/detect.tflite"
9
+ LABEL_PATH = "custom_model_lite/labelmap.txt"
10
+
11
+ # Function to load the TFLite model and labels
12
+ def load_model():
13
+ interpreter = Interpreter(model_path=MODEL_PATH)
14
+ interpreter.allocate_tensors()
15
+ input_details = interpreter.get_input_details()
16
+ output_details = interpreter.get_output_details()
17
+ height = input_details[0]['shape'][1]
18
+ width = input_details[0]['shape'][2]
19
+
20
+ with open(LABEL_PATH, 'r') as f:
21
+ labels = [line.strip() for line in f.readlines()]
22
+
23
+ print(f"Model loaded. Input shape: {input_details[0]['shape']}")
24
+ return interpreter, input_details, output_details, height, width, labels
25
+
26
+ # Function to preprocess the image for the model
27
+ def preprocess_image(image, input_details, height, width):
28
+ image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
29
+ image_resized = cv2.resize(image_rgb, (width, height))
30
+ input_data = np.expand_dims(image_resized, axis=0)
31
+
32
+ if input_details[0]['dtype'] == np.float32:
33
+ input_data = (np.float32(input_data) - 127.5) / 127.5
34
+
35
+ print(f"Image preprocessed: shape {input_data.shape}, dtype {input_data.dtype}")
36
+ return input_data
37
+
38
+ # Function to perform object detection and draw bounding boxes
39
+ def detect_objects(image, interpreter, input_details, output_details, labels):
40
+ input_data = preprocess_image(image, input_details, height, width)
41
+ interpreter.set_tensor(input_details[0]['index'], input_data)
42
+ interpreter.invoke()
43
+
44
+ boxes = interpreter.get_tensor(output_details[1]['index'])[0] # bounding box coordinates
45
+ classes = interpreter.get_tensor(output_details[3]['index'])[0] # class index
46
+ scores = interpreter.get_tensor(output_details[0]['index'])[0] # confidence scores
47
+
48
+ print(f"Detections: {len(scores)} objects detected")
49
+
50
+ for i in range(len(scores)):
51
+ if scores[i] > 0.1: # confidence threshold
52
+ ymin, xmin, ymax, xmax = boxes[i]
53
+ ymin = int(max(1, ymin * image.shape[0]))
54
+ xmin = int(max(1, xmin * image.shape[1]))
55
+ ymax = int(min(image.shape[0], ymax * image.shape[0]))
56
+ xmax = int(min(image.shape[1], xmax * image.shape[1]))
57
+ cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
58
+ label = f'{labels[int(classes[i])]}: {scores[i] * 100:.2f}%'
59
+ cv2.putText(image, label, (xmin, ymin - 10),
60
+ cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
61
+ print(f"Object {i}: {label} at [{xmin}, {ymin}, {xmax}, {ymax}]")
62
+
63
+ return image
64
+
65
+ # Initialize the Flask app
66
+ app = Flask(__name__, static_folder='static')
67
+
68
+ # Load the TFLite model and labels
69
+ interpreter, input_details, output_details, height, width, labels = load_model()
70
+
71
+ @app.route('/', methods=['GET', 'POST'])
72
+ def upload_and_detect():
73
+ if request.method == 'POST':
74
+ if 'file' not in request.files:
75
+ print("No file part in the request")
76
+ return redirect(request.url)
77
+ file = request.files['file']
78
+ if file.filename == '':
79
+ print("No selected file")
80
+ return redirect(request.url)
81
+
82
+ # Read the image file
83
+ image = cv2.imdecode(np.frombuffer(file.read(), np.uint8), cv2.IMREAD_COLOR)
84
+ if image is None:
85
+ print("Failed to read image")
86
+ return redirect(request.url)
87
+
88
+ print(f"Image uploaded: {file.filename}, shape: {image.shape}")
89
+
90
+ # Perform object detection
91
+ processed_image = detect_objects(image, interpreter, input_details, output_details, labels)
92
+
93
+ # Ensure the static directory exists
94
+ if not os.path.exists(app.static_folder):
95
+ os.makedirs(app.static_folder)
96
+
97
+ # Save processed image
98
+ save_path = os.path.join(app.static_folder, 'detected.jpg')
99
+ cv2.imwrite(save_path, processed_image)
100
+ print(f"Processed image saved at: {save_path}")
101
+
102
+ # Send back the path to the processed image
103
+ return jsonify({'image_url': url_for('static', filename='detected.jpg')})
104
+
105
+ return render_template('upload.html')
106
+
107
+ if __name__ == '__main__':
108
+ app.run(host='0.0.0.0', port=8000)