orionweller
commited on
Commit
•
0df179d
1
Parent(s):
e187e6e
init
Browse files- app.py +65 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Model loading and setup
|
6 |
+
model_name = "jhu-clsp/FollowIR-7B"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
9 |
+
tokenizer.pad_token = tokenizer.eos_token
|
10 |
+
tokenizer.padding_side = "left"
|
11 |
+
token_false_id = tokenizer.get_vocab()["false"]
|
12 |
+
token_true_id = tokenizer.get_vocab()["true"]
|
13 |
+
|
14 |
+
template = """<s> [INST] You are an expert Google searcher, whose job is to determine if the following document is relevant to the query (true/false). Answer using only one word, one of those two choices.
|
15 |
+
|
16 |
+
Query: {query}
|
17 |
+
Document: {text}
|
18 |
+
Relevant (only output one word, either "true" or "false"): [/INST] """
|
19 |
+
|
20 |
+
def check_relevance(query, instruction, passage):
|
21 |
+
full_query = f"{query} {instruction}"
|
22 |
+
prompt = template.format(query=full_query, text=passage)
|
23 |
+
|
24 |
+
tokens = tokenizer(
|
25 |
+
[prompt],
|
26 |
+
padding=True,
|
27 |
+
truncation=True,
|
28 |
+
return_tensors="pt",
|
29 |
+
pad_to_multiple_of=None,
|
30 |
+
)
|
31 |
+
|
32 |
+
for key in tokens:
|
33 |
+
tokens[key] = tokens[key].cuda()
|
34 |
+
|
35 |
+
batch_scores = model(**tokens).logits[:, -1, :]
|
36 |
+
true_vector = batch_scores[:, token_true_id]
|
37 |
+
false_vector = batch_scores[:, token_false_id]
|
38 |
+
batch_scores = torch.stack([false_vector, true_vector], dim=1)
|
39 |
+
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
|
40 |
+
score = batch_scores[:, 1].exp().item()
|
41 |
+
|
42 |
+
return f"{score:.4f}"
|
43 |
+
|
44 |
+
# Gradio Interface
|
45 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
46 |
+
gr.Markdown("# FollowIR Relevance Checker")
|
47 |
+
gr.Markdown("This app uses the FollowIR-7B model to determine the relevance of a passage to a given query and instruction.")
|
48 |
+
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
query_input = gr.Textbox(label="Query", placeholder="Enter your search query here")
|
52 |
+
instruction_input = gr.Textbox(label="Instruction", placeholder="Enter additional instructions or criteria")
|
53 |
+
passage_input = gr.Textbox(label="Passage", placeholder="Enter the passage to check for relevance", lines=5)
|
54 |
+
submit_button = gr.Button("Check Relevance")
|
55 |
+
|
56 |
+
with gr.Column():
|
57 |
+
output = gr.Textbox(label="Relevance Probability")
|
58 |
+
|
59 |
+
submit_button.click(
|
60 |
+
check_relevance,
|
61 |
+
inputs=[query_input, instruction_input, passage_input],
|
62 |
+
outputs=[output]
|
63 |
+
)
|
64 |
+
|
65 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|