Spaces:
Sleeping
Sleeping
orionweller
commited on
Commit
·
0a8b37d
1
Parent(s):
50dea48
annotation ready
Browse files- analysis.py +0 -140
- app.py +122 -568
- constants.py +0 -90
- dataset_loading.py +1 -79
- ir_dataset_metadata.py +0 -486
- ir_dataset_names.json +0 -485
- local_datasets/codesearch_py/corpus.jsonl +0 -3
- local_datasets/codesearch_py/qrels/test.tsv +0 -3
- local_datasets/codesearch_py/qrels/test.tsv.tmp +0 -3
- local_datasets/codesearch_py/qrels/test.tsv.tmp.2 +0 -3
- local_datasets/codesearch_py/qrels/test.tsv.tmp.2.filtered +0 -3
- local_datasets/codesearch_py/queries.jsonl +0 -3
- local_datasets/gooaq_technical/corpus.jsonl +0 -3
- local_datasets/gooaq_technical/qrels/test.tsv +0 -3
- local_datasets/gooaq_technical/qrels/test.tsv.tmp +0 -3
- local_datasets/gooaq_technical/qrels/test.tsv.tmp.2 +0 -3
- local_datasets/gooaq_technical/qrels/test.tsv.tmp.2.filtered +0 -3
- local_datasets/gooaq_technical/queries.jsonl +0 -3
- requirements.txt +0 -6
- scripts/collect_ir_dataset_names.py +0 -26
- test.tst +0 -55
analysis.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
from transformers import pipeline
|
6 |
-
import streamlit as st
|
7 |
-
|
8 |
-
import plotly.express as px
|
9 |
-
import plotly.figure_factory as ff
|
10 |
-
|
11 |
-
from captum.attr import LayerIntegratedGradients, TokenReferenceBase, visualization
|
12 |
-
from captum.attr import visualization as viz
|
13 |
-
from captum import attr
|
14 |
-
from captum.attr._utils.visualization import format_word_importances, format_special_tokens, _get_color
|
15 |
-
|
16 |
-
|
17 |
-
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
18 |
-
|
19 |
-
|
20 |
-
def results_to_df(results: dict, metric_name: str):
|
21 |
-
metric_scores = []
|
22 |
-
for topic, results_dict in results.items():
|
23 |
-
for metric_name_cur, metric_value in results_dict.items():
|
24 |
-
if metric_name == metric_name_cur:
|
25 |
-
metric_scores.append(metric_value)
|
26 |
-
return pd.DataFrame({metric_name: metric_scores})
|
27 |
-
|
28 |
-
|
29 |
-
def create_boxplot_1df(results: dict, metric_name: str):
|
30 |
-
df = results_to_df(results, metric_name)
|
31 |
-
fig = px.box(df, y=metric_name)
|
32 |
-
return fig
|
33 |
-
|
34 |
-
|
35 |
-
def create_boxplot_2df(results1, results2, metric_name):
|
36 |
-
df1 = results_to_df(results1, metric_name)
|
37 |
-
df2 = results_to_df(results2, metric_name)
|
38 |
-
df2["Run"] = "Run 2"
|
39 |
-
df1["Run"] = "Run 1"
|
40 |
-
df = pd.concat([df1, df2])
|
41 |
-
|
42 |
-
# Create distplot with custom bin_size
|
43 |
-
fig = px.histogram(df, x=metric_name, color="Run", marginal="box", hover_data=df.columns)
|
44 |
-
return fig
|
45 |
-
|
46 |
-
|
47 |
-
def create_boxplot_diff(results1, results2, metric_name):
|
48 |
-
df1 = results_to_df(results1, metric_name)
|
49 |
-
df2 = results_to_df(results2, metric_name)
|
50 |
-
diff = df1[metric_name] - df2[metric_name]
|
51 |
-
|
52 |
-
x_axis = f"Difference in {metric_name} from 1 to 2"
|
53 |
-
fig = px.histogram(pd.DataFrame({x_axis: diff}), x=x_axis, marginal="box")
|
54 |
-
return fig
|
55 |
-
|
56 |
-
|
57 |
-
def summarize_attributions(attributions):
|
58 |
-
attributions = attributions.sum(dim=-1).squeeze(0)
|
59 |
-
attributions = attributions / torch.norm(attributions)
|
60 |
-
return attributions
|
61 |
-
|
62 |
-
|
63 |
-
def get_words(words, importances):
|
64 |
-
words_colored = []
|
65 |
-
for word, importance in zip(words, importances[: len(words)]):
|
66 |
-
word = format_special_tokens(word)
|
67 |
-
color = _get_color(importance)
|
68 |
-
unwrapped_tag = '<span style="background-color: {color}; opacity:1.0; line-height:1.75">{word}</span>'.format(
|
69 |
-
color=color, word=word
|
70 |
-
)
|
71 |
-
words_colored.append(unwrapped_tag)
|
72 |
-
return words_colored
|
73 |
-
|
74 |
-
@st.cache_resource
|
75 |
-
def get_model(model_name: str):
|
76 |
-
if "MonoT5" in model_name:
|
77 |
-
if model_name == "MonoT5-Small":
|
78 |
-
pipe = pipeline('text2text-generation',
|
79 |
-
model='castorini/monot5-small-msmarco-10k',
|
80 |
-
tokenizer='castorini/monot5-small-msmarco-10k',
|
81 |
-
device='cpu')
|
82 |
-
elif model_name == "MonoT5-3B":
|
83 |
-
pipe = pipeline('text2text-generation',
|
84 |
-
model='castorini/monot5-3b-msmarco-10k',
|
85 |
-
tokenizer='castorini/monot5-3b-msmarco-10k',
|
86 |
-
device='cpu')
|
87 |
-
def formatter(query, doc):
|
88 |
-
return f"Query: {query} Document: {doc} Relevant:"
|
89 |
-
|
90 |
-
|
91 |
-
return pipe, formatter
|
92 |
-
|
93 |
-
def prep_func(pipe, formatter):
|
94 |
-
# variables that only need to be run once
|
95 |
-
decoder_input_ids = pipe.tokenizer(["<pad>"], return_tensors="pt", add_special_tokens=False, truncation=True).input_ids.to('cpu')
|
96 |
-
decoder_embedding_layer = pipe.model.base_model.decoder.embed_tokens
|
97 |
-
decoder_inputs_emb = decoder_embedding_layer(decoder_input_ids)
|
98 |
-
|
99 |
-
token_false_id = pipe.tokenizer.get_vocab()['▁false']
|
100 |
-
token_true_id = pipe.tokenizer.get_vocab()["▁true"]
|
101 |
-
|
102 |
-
# this function needs to be run for each combination
|
103 |
-
@st.cache_data
|
104 |
-
def get_saliency(query, doc):
|
105 |
-
input_ids = pipe.tokenizer(
|
106 |
-
[formatter(query, doc)],
|
107 |
-
padding=False,
|
108 |
-
truncation=True,
|
109 |
-
return_tensors="pt",
|
110 |
-
max_length=pipe.tokenizer.model_max_length,
|
111 |
-
)["input_ids"].to('cpu')
|
112 |
-
|
113 |
-
embedding_layer = pipe.model.base_model.encoder.embed_tokens
|
114 |
-
inputs_emb = embedding_layer(input_ids)
|
115 |
-
|
116 |
-
def forward_from_embeddings(inputs_embeds, decoder_inputs_embeds):
|
117 |
-
logits = pipe.model.forward(inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds)['logits'][:, -1, :]
|
118 |
-
batch_scores = logits[:, [token_false_id, token_true_id]]
|
119 |
-
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
|
120 |
-
scores = batch_scores[:, 1].exp() # relevant token
|
121 |
-
return scores
|
122 |
-
|
123 |
-
lig = attr.Saliency(forward_from_embeddings)
|
124 |
-
attributions_ig, delta = lig.attribute(
|
125 |
-
inputs=(inputs_emb, decoder_inputs_emb)
|
126 |
-
)
|
127 |
-
attributions_normed = summarize_attributions(attributions_ig)
|
128 |
-
return "\n".join(get_words(pipe.tokenizer.convert_ids_to_tokens(input_ids.squeeze(0).tolist()), attributions_normed))
|
129 |
-
|
130 |
-
return get_saliency
|
131 |
-
|
132 |
-
|
133 |
-
if __name__ == "__main__":
|
134 |
-
query = "how to add dll to visual studio?"
|
135 |
-
doc = "StackOverflow In the days of 16-bit Windows, a WPARAM was a 16-bit word, while LPARAM was a 32-bit long. These distinctions went away in Win32; they both became 32-bit values. ... WPARAM is defined as UINT_PTR , which in 64-bit Windows is an unsigned, 64-bit value."
|
136 |
-
model, formatter = get_model("MonoT5")
|
137 |
-
get_saliency = prep_func(model, formatter)
|
138 |
-
print(get_saliency(query, doc))
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,46 +1,58 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import pathlib
|
4 |
-
import beir
|
5 |
-
from beir import util
|
6 |
-
from beir.datasets.data_loader import GenericDataLoader
|
7 |
-
import pytrec_eval
|
8 |
import pandas as pd
|
9 |
from collections import defaultdict
|
10 |
import json
|
11 |
import copy
|
12 |
import plotly.express as px
|
13 |
|
14 |
-
from
|
15 |
-
from dataset_loading import get_dataset, load_run, load_local_qrels, load_local_corpus, load_local_queries
|
16 |
-
from analysis import create_boxplot_1df, create_boxplot_2df, create_boxplot_diff, get_model, prep_func
|
17 |
|
18 |
|
19 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
20 |
st.set_page_config(layout="wide")
|
21 |
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
-
def
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
return True
|
43 |
-
return False
|
44 |
|
45 |
|
46 |
def validate(config_option, file_loaded):
|
@@ -49,196 +61,54 @@ def validate(config_option, file_loaded):
|
|
49 |
st.stop()
|
50 |
|
51 |
|
52 |
-
def combine(text_og, text_new, combine_type):
|
53 |
-
if combine_type == "None":
|
54 |
-
return text_og
|
55 |
-
elif combine_type == "Append":
|
56 |
-
return text_og + " <APPEND> " + text_new
|
57 |
-
elif combine_type == "Prepend":
|
58 |
-
return text_new + " <PREPEND> " + text_og
|
59 |
-
elif combine_type == "Replace":
|
60 |
-
return text_new
|
61 |
-
else:
|
62 |
-
raise ValueError("Invalid combine type")
|
63 |
-
|
64 |
with st.sidebar:
|
65 |
st.title("Options")
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
queries = None
|
93 |
-
corpus = None
|
94 |
-
|
95 |
-
|
96 |
-
x = st.header('Upload a run file')
|
97 |
-
run1_file = st.file_uploader("Choose a file", key="run1")
|
98 |
-
y = st.header("Upload a second run file")
|
99 |
-
run2_file = st.file_uploader("Choose a file", key="run2")
|
100 |
|
101 |
z = st.header("Analysis Options")
|
102 |
# sliderbar of how many Top N to choose
|
103 |
-
|
104 |
-
n_relevant_docs = st.slider("Number of relevant docs", 1, 100, 3)
|
105 |
-
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
106 |
-
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
107 |
-
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
108 |
-
use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False)
|
109 |
-
if use_model_saliency:
|
110 |
-
# choose from a list of models
|
111 |
-
model_name = st.selectbox("Choose from a list of models", ["MonoT5-Small", "MonoT5-3B"])
|
112 |
-
model, formatter = get_model(model_name)
|
113 |
-
get_saliency = prep_func(model, formatter)
|
114 |
-
|
115 |
-
|
116 |
-
advanced_options1 = st.checkbox("Show advanced options for Run 1", value=False)
|
117 |
-
doc_expansion1 = doc_expansion2 = None
|
118 |
-
query_expansion1 = query_expansion2 = None
|
119 |
-
run1_uses_query_expansion = "None"
|
120 |
-
run1_uses_doc_expansion = "None"
|
121 |
-
run2_uses_query_expansion = "None"
|
122 |
-
run2_uses_doc_expansion = "None"
|
123 |
-
if advanced_options1:
|
124 |
-
doc_header = st.header("Upload a Document Expansion file")
|
125 |
-
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion")
|
126 |
-
if doc_expansion_file is not None:
|
127 |
-
doc_expansion1 = load_local_corpus(doc_expansion_file)
|
128 |
-
query_header = st.header("Upload a Query Expansion file")
|
129 |
-
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion")
|
130 |
-
if query_expansion_file is not None:
|
131 |
-
query_expansion1 = load_local_queries(query_expansion_file)
|
132 |
-
|
133 |
-
run1_uses_query_expansion = st.selectbox("Type of query expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
|
134 |
-
run1_uses_doc_expansion = st.selectbox("Type of document expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
|
135 |
-
validate(run1_uses_query_expansion, query_expansion_file)
|
136 |
-
validate(run1_uses_doc_expansion, doc_expansion_file)
|
137 |
-
|
138 |
-
advanced_options2 = st.checkbox("Show advanced options for Run 2", value=False)
|
139 |
-
if advanced_options2:
|
140 |
-
doc_header = st.header("Upload a Document Expansion file")
|
141 |
-
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion2")
|
142 |
-
if doc_expansion_file is not None:
|
143 |
-
doc_expansion2 = load_local_corpus(doc_expansion_file)
|
144 |
-
query_header = st.header("Upload a Query Expansion file")
|
145 |
-
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion2")
|
146 |
-
if query_expansion_file is not None:
|
147 |
-
query_expansion2 = load_local_queries(query_expansion_file)
|
148 |
-
|
149 |
-
run2_uses_query_expansion = st.selectbox("Type of query expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
|
150 |
-
run2_uses_doc_expansion = st.selectbox("Type of document expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
|
151 |
-
validate(run2_uses_query_expansion, query_expansion_file)
|
152 |
-
validate(run2_uses_doc_expansion, doc_expansion_file)
|
153 |
-
|
154 |
-
|
155 |
-
# everything hinges on the run being uploaded, so do that first
|
156 |
-
# init_title = st.title("Upload Run and Choose Details")
|
157 |
-
|
158 |
-
if run1_file is not None:
|
159 |
-
run1, run1_pandas = load_run(run1_file)
|
160 |
-
|
161 |
-
# do everything, now that we have the run file
|
162 |
-
if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
163 |
-
# init_title = st.title("Analysis")
|
164 |
-
# don't load these til a run is given
|
165 |
-
if dataset_name != "custom":
|
166 |
-
corpus, queries, qrels = get_dataset(dataset_name, input_fields_doc, input_fields_query)
|
167 |
-
|
168 |
-
evaluator = pytrec_eval.RelevanceEvaluator(
|
169 |
-
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
170 |
-
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
|
171 |
-
average_run1_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results1.values()])
|
172 |
-
if len(results1) == 0:
|
173 |
-
# alert and stop
|
174 |
-
st.error("Run file is empty")
|
175 |
-
st.stop()
|
176 |
|
177 |
-
if run2_file is not None:
|
178 |
-
run2, run2_pandas = load_run(run2_file)
|
179 |
-
# NOTE: will fail if run1 is not uploaded
|
180 |
-
evaluator2 = pytrec_eval.RelevanceEvaluator(
|
181 |
-
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
182 |
-
results2 = evaluator2.evaluate(run2)
|
183 |
-
average_run2_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results2.values()])
|
184 |
|
|
|
185 |
|
186 |
-
|
|
|
|
|
187 |
|
188 |
-
# incorrect = 0
|
189 |
-
is_better_run1_count = 0
|
190 |
-
is_better_run2_count = 0
|
191 |
-
is_same_count = 0
|
192 |
-
run1_details = {"none": 0, "perfect": 0, "inbetween": 0}
|
193 |
-
run2_details = {"none": 0, "perfect": 0, "inbetween": 0}
|
194 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
195 |
st.title("Instances")
|
196 |
-
|
197 |
-
set_of_cols = set(run1_pandas.qid.tolist())
|
198 |
-
container_for_nav = st.container()
|
199 |
-
name_of_columns = sorted([item for item in set_of_cols])
|
200 |
-
instances_to_use = []
|
201 |
-
# st.divider()
|
202 |
-
for idx in range(len(name_of_columns)):
|
203 |
-
is_incorrect = False
|
204 |
-
is_better_run1 = False
|
205 |
-
is_better_run2 = False
|
206 |
-
|
207 |
-
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
|
208 |
-
run1_details = update_details(run1_details, run1_score)
|
209 |
-
if run2_file is not None:
|
210 |
-
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
|
211 |
-
run2_details = update_details(run2_details, run2_score)
|
212 |
-
|
213 |
-
if run1_score == 0 or run2_score == 0:
|
214 |
-
is_incorrect = True
|
215 |
-
|
216 |
-
if run1_score > run2_score:
|
217 |
-
is_better_run1_count += 1
|
218 |
-
is_better_run1 = True
|
219 |
-
elif run2_score > run1_score:
|
220 |
-
is_better_run2_count += 1
|
221 |
-
is_better_run2 = True
|
222 |
-
else:
|
223 |
-
is_same_count += 1
|
224 |
-
|
225 |
-
|
226 |
-
if not incorrect_only or is_incorrect:
|
227 |
-
if not one_better_than_two or is_better_run1:
|
228 |
-
if not two_better_than_one or is_better_run2:
|
229 |
-
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
|
230 |
-
# st.divider()
|
231 |
-
instances_to_use.append(name_of_columns[idx])
|
232 |
-
else:
|
233 |
-
if run1_score == 0:
|
234 |
-
is_incorrect = True
|
235 |
-
|
236 |
-
if not incorrect_only or is_incorrect:
|
237 |
-
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
|
238 |
-
# st.divider()
|
239 |
-
instances_to_use.append(name_of_columns[idx])
|
240 |
-
|
241 |
-
|
242 |
def sync_from_drop():
|
243 |
if st.session_state.selectbox_instance == "Overview":
|
244 |
st.session_state.number_of_col = -1
|
@@ -261,378 +131,62 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
261 |
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
|
262 |
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
|
263 |
st.divider()
|
264 |
-
# make pie plot showing
|
265 |
-
st.header("
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
right_score.metric(label="#Q", value=len(results1))
|
273 |
-
|
274 |
-
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
275 |
-
st.write("Run 1 Scores")
|
276 |
-
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
277 |
-
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
278 |
-
else:
|
279 |
-
overall_scores_container = st.container()
|
280 |
-
left_score, right_score = overall_scores_container.columns([1, 1])
|
281 |
-
left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3))
|
282 |
-
right_score.metric(label=f"Run 2 {metric_name}", value=round(average_run2_score, 3))
|
283 |
-
|
284 |
-
if st.checkbox("Show Run 1 vs Run 2", value=True):
|
285 |
-
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
|
286 |
-
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
287 |
-
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
288 |
-
|
289 |
-
if st.checkbox("Show Run 1 Breakdown"):
|
290 |
-
plotly_pie_chart_run1 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
291 |
-
plotly_pie_chart_run1.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
292 |
-
st.plotly_chart(plotly_pie_chart_run1, use_container_width=True)
|
293 |
-
if st.checkbox("Show Run 2 Breakdown"):
|
294 |
-
plotly_pie_chart_run2 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run2_details["perfect"], run2_details["inbetween"], run2_details["none"]])
|
295 |
-
plotly_pie_chart_run2.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
296 |
-
st.plotly_chart(plotly_pie_chart_run2, use_container_width=True)
|
297 |
-
|
298 |
|
299 |
|
300 |
with col2:
|
301 |
-
#
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
if inst_index >= 0:
|
309 |
-
inst_num = instances_to_use[inst_index - 1]
|
310 |
-
|
311 |
-
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
|
312 |
-
|
313 |
-
container = st.container()
|
314 |
-
|
315 |
-
rank_col, score_col, id_col = container.columns([2,1,3])
|
316 |
-
id_col.metric("ID", inst_num)
|
317 |
-
score_col.metric(metric_name, results1[str(inst_num)][metric_name])
|
318 |
-
|
319 |
-
# st.subheader(f"ID")
|
320 |
-
# st.markdown(inst_num)
|
321 |
-
st.divider()
|
322 |
-
|
323 |
-
st.subheader(f"Query")
|
324 |
-
if run1_uses_query_expansion != "None":
|
325 |
-
show_orig_rel = st.checkbox("Show Original Query", key=f"{inst_index}reloriguery", value=False)
|
326 |
-
|
327 |
-
query_text_og = queries[str(inst_num)]
|
328 |
-
if query_expansion1 is not None and run1_uses_query_expansion != "None" and not show_orig_rel:
|
329 |
-
alt_text = query_expansion1[str(inst_num)]
|
330 |
-
query_text = combine(query_text_og, alt_text, run1_uses_query_expansion)
|
331 |
-
else:
|
332 |
-
query_text = query_text_og
|
333 |
-
st.markdown(query_text)
|
334 |
-
st.divider()
|
335 |
-
|
336 |
-
## Documents
|
337 |
-
# relevant
|
338 |
-
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
|
339 |
-
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
340 |
-
st.subheader("Relevant Documents")
|
341 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
342 |
-
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
|
343 |
-
|
344 |
-
for (docid, title, text) in doc_texts:
|
345 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel:
|
346 |
-
alt_text = doc_expansion1[docid]["text"]
|
347 |
-
text = combine(text, alt_text, run1_uses_doc_expansion)
|
348 |
-
|
349 |
-
if use_model_saliency:
|
350 |
-
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
|
351 |
-
st.markdown(get_saliency(query_text, doc_texts),unsafe_allow_html=True)
|
352 |
-
else:
|
353 |
-
st.text_area(f"{docid}:", text)
|
354 |
-
|
355 |
-
else:
|
356 |
-
st.text_area(f"{docid}:", text)
|
357 |
-
|
358 |
-
|
359 |
-
# go through each of the relevant documents
|
360 |
-
ranks = []
|
361 |
-
for docid in relevant_docs:
|
362 |
-
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
|
363 |
-
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
364 |
-
if rank_pred.empty:
|
365 |
-
ranks.append("-")
|
366 |
-
else:
|
367 |
-
ranks.append(rank_pred.iloc[0]["rank"])
|
368 |
-
# st.subheader("Ranked of Documents")
|
369 |
-
# st.markdown(f"Rank: {rank_pred}")
|
370 |
-
ranking_str = ",".join([str(item) for item in ranks])
|
371 |
-
if ranking_str == "":
|
372 |
-
ranking_str = "-"
|
373 |
-
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
|
374 |
-
# breakpoint()
|
375 |
-
|
376 |
-
|
377 |
-
st.divider()
|
378 |
-
|
379 |
-
# top ranked
|
380 |
-
|
381 |
-
if st.checkbox('Show top ranked documents', key=f"{inst_index}top-1run"):
|
382 |
-
st.subheader("Top N Ranked Documents")
|
383 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
384 |
-
show_orig_rel_ranked = st.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs", value=False)
|
385 |
-
|
386 |
-
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
|
387 |
-
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
388 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked:
|
389 |
-
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
390 |
-
for d_idx, doc in enumerate(run1_top_n_docs):
|
391 |
-
alt_text = run1_top_n_docs_alt[d_idx]["text"]
|
392 |
-
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
|
393 |
-
if use_model_saliency:
|
394 |
-
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
|
395 |
-
st.markdown(get_saliency(query_text, doc_text),unsafe_allow_html=True)
|
396 |
-
else:
|
397 |
-
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
|
398 |
-
else:
|
399 |
-
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
|
400 |
-
else:
|
401 |
-
for d_idx, doc in enumerate(run1_top_n_docs):
|
402 |
-
if use_model_saliency:
|
403 |
-
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked", value=False):
|
404 |
-
st.markdown(get_saliency(query_text, doc),unsafe_allow_html=True)
|
405 |
-
else:
|
406 |
-
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
|
407 |
-
else:
|
408 |
-
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
|
409 |
-
st.divider()
|
410 |
-
|
411 |
-
# none checked
|
412 |
-
elif inst_index < 0:
|
413 |
-
st.title("Overview")
|
414 |
-
st.subheader(f"Scores of {metric_name}")
|
415 |
-
plotly_chart = create_boxplot_1df(results1, metric_name)
|
416 |
-
st.plotly_chart(plotly_chart)
|
417 |
-
|
418 |
-
## Both run files available
|
419 |
-
elif run1_file is not None and run2_file is not None:
|
420 |
-
has_check = False
|
421 |
-
container_top = st.container()
|
422 |
-
|
423 |
-
# get instance number
|
424 |
-
inst_index = number_of_col
|
425 |
-
|
426 |
-
if inst_index >= 0:
|
427 |
-
inst_num = instances_to_use[inst_index]
|
428 |
-
|
429 |
-
col_run1, col_run2 = container_top.columns([1,1])
|
430 |
-
col_run1.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
|
431 |
-
col_run2.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 2</h1>", unsafe_allow_html=True)
|
432 |
-
|
433 |
-
container_overview = st.container()
|
434 |
-
rank_col1, score_col1, rank_col2, score_col2 = container_overview.columns([2,1,2,1])
|
435 |
-
# id_col1.metric("", "")
|
436 |
-
score_col1.metric("Run 1 " + metric_name, results1[str(inst_num)][metric_name])
|
437 |
-
score_col2.metric("Run 2 " + metric_name, results2[str(inst_num)][metric_name])
|
438 |
-
|
439 |
-
st.divider()
|
440 |
-
|
441 |
-
st.subheader(f"Query")
|
442 |
-
container_two_query = st.container()
|
443 |
-
col_run1, col_run2 = container_two_query.columns(2, gap="medium")
|
444 |
-
|
445 |
-
query_text_og = queries[str(inst_num)]
|
446 |
-
if run1_uses_query_expansion != "None" and run2_uses_query_expansion != "None":
|
447 |
-
alt_text1 = query_expansion1[str(inst_num)]
|
448 |
-
alt_text2 = query_expansion2[str(inst_num)]
|
449 |
-
combined_text1 = combine(query_text_og, alt_text1, run1_uses_query_expansion)
|
450 |
-
combined_text2 = combine(query_text_og, alt_text2, run2_uses_query_expansion)
|
451 |
-
col_run1.markdown(combined_text1)
|
452 |
-
col_run2.markdown(combined_text2)
|
453 |
-
query_text1 = combined_text1
|
454 |
-
query_text2 = combined_text2
|
455 |
-
elif run1_uses_query_expansion != "None":
|
456 |
-
alt_text = query_expansion1[str(inst_num)]
|
457 |
-
combined_text1 = combine(query_text_og, alt_text, run1_uses_query_expansion)
|
458 |
-
col_run1.markdown(combined_text1)
|
459 |
-
col_run2.markdown(query_text_og)
|
460 |
-
query_text1 = combined_text1
|
461 |
-
query_text2 = query_text_og
|
462 |
-
elif run2_uses_query_expansion != "None":
|
463 |
-
alt_text = query_expansion2[str(inst_num)]
|
464 |
-
combined_text2 = combine(query_text_og, alt_text, run2_uses_query_expansion)
|
465 |
-
col_run1.markdown(query_text_og)
|
466 |
-
col_run2.markdown(combined_text2)
|
467 |
-
query_text1 = query_text_og
|
468 |
-
query_text2 = combined_text2
|
469 |
-
else:
|
470 |
-
query_text = query_text_og
|
471 |
-
col_run1.markdown(query_text)
|
472 |
-
col_run2.markdown(query_text)
|
473 |
-
query_text1 = query_text
|
474 |
-
query_text2 = query_text
|
475 |
-
|
476 |
-
st.divider()
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
## Documents
|
481 |
-
# relevant
|
482 |
-
st.subheader("Relevant Documents")
|
483 |
-
container_two_docs_rel = st.container()
|
484 |
-
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
|
485 |
-
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
|
486 |
-
relevant_score = {ind_doc_id: qrels[str(inst_num)][ind_doc_id] for ind_doc_id in relevant_docs}
|
487 |
-
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"], relevant_score[doc_id]) for doc_id in relevant_docs]
|
488 |
-
|
489 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
490 |
-
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
|
491 |
-
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
|
492 |
-
show_orig_rel2 = col_run2.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run2", value=False)
|
493 |
-
|
494 |
-
for (docid, title, text, rel_score) in doc_texts:
|
495 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel1:
|
496 |
-
alt_text = doc_expansion1[docid]["text"]
|
497 |
-
text = combine(text, alt_text, run1_uses_doc_expansion)
|
498 |
-
|
499 |
-
if use_model_saliency:
|
500 |
-
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant", value=False):
|
501 |
-
col_run1.markdown(get_saliency(query_text1, text),unsafe_allow_html=True)
|
502 |
-
else:
|
503 |
-
col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1")
|
504 |
-
else:
|
505 |
-
col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1")
|
506 |
-
|
507 |
-
for (docid, title, text, rel_score) in doc_texts:
|
508 |
-
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel2:
|
509 |
-
alt_text = doc_expansion2[docid]["text"] if docid in doc_expansion2 else "<NOT EXPANDED>"
|
510 |
-
text = combine(text, alt_text, run2_uses_doc_expansion)
|
511 |
-
|
512 |
-
if use_model_saliency:
|
513 |
-
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant2", value=False):
|
514 |
-
col_run2.markdown(get_saliency(query_text2, text),unsafe_allow_html=True)
|
515 |
-
else:
|
516 |
-
col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2")
|
517 |
-
else:
|
518 |
-
col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2")
|
519 |
-
|
520 |
-
# top ranked
|
521 |
-
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
|
522 |
-
# we have to fix that or we don't match the scores
|
523 |
-
|
524 |
-
ranks2 = []
|
525 |
-
for docid in relevant_docs:
|
526 |
-
pred_doc = run2_pandas[run2_pandas.doc_id.isin([docid])]
|
527 |
-
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
528 |
-
if rank_pred.empty:
|
529 |
-
ranks2.append("-")
|
530 |
-
else:
|
531 |
-
ranks2.append(rank_pred.iloc[0]["rank"])
|
532 |
-
# st.subheader("Ranked of Documents")
|
533 |
-
# st.markdown(f"Rank: {rank_pred}")
|
534 |
-
ranking_str2 = ",".join([str(item) for item in ranks2])
|
535 |
-
if ranking_str2 == "":
|
536 |
-
ranking_str2 = "-"
|
537 |
-
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
|
538 |
-
|
539 |
-
|
540 |
-
ranks1 = []
|
541 |
-
for docid in relevant_docs:
|
542 |
-
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
|
543 |
-
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
544 |
-
if rank_pred.empty:
|
545 |
-
ranks1.append("-")
|
546 |
-
else:
|
547 |
-
ranks1.append(rank_pred.iloc[0]["rank"])
|
548 |
-
# st.subheader("Ranked of Documents")
|
549 |
-
# st.markdown(f"Rank: {rank_pred}")
|
550 |
-
ranking_str1 = ",".join([str(item) for item in ranks1])
|
551 |
-
if ranking_str1 == "":
|
552 |
-
ranking_str1 = "-"
|
553 |
-
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str1)
|
554 |
-
|
555 |
-
|
556 |
-
st.divider()
|
557 |
-
|
558 |
-
|
559 |
-
container_two_docs_ranked = st.container()
|
560 |
-
col_run1, col_run2 = container_two_docs_ranked.columns(2, gap="medium")
|
561 |
-
|
562 |
-
if col_run1.checkbox('Show top ranked documents for Run 1', key=f"{inst_index}top-1run"):
|
563 |
-
col_run1.subheader("Top N Ranked Documents")
|
564 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
565 |
-
show_orig_rel_ranked1 = col_run1.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs1", value=False)
|
566 |
-
|
567 |
-
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
|
568 |
-
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
569 |
-
|
570 |
-
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked1:
|
571 |
-
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
|
572 |
-
for d_idx, doc in enumerate(run1_top_n_docs):
|
573 |
-
alt_text = run1_top_n_docs_alt[d_idx]["text"]
|
574 |
-
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
|
575 |
-
if use_model_saliency:
|
576 |
-
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
|
577 |
-
col_run1.markdown(get_saliency(query_text1, doc_text),unsafe_allow_html=True)
|
578 |
-
else:
|
579 |
-
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
|
580 |
-
else:
|
581 |
-
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
|
582 |
-
else:
|
583 |
-
for d_idx, doc in enumerate(run1_top_n_docs):
|
584 |
-
if use_model_saliency:
|
585 |
-
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
|
586 |
-
col_run1.markdown(get_saliency(query_text1, doc),unsafe_allow_html=True)
|
587 |
-
else:
|
588 |
-
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
|
589 |
-
else:
|
590 |
-
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
|
591 |
-
|
592 |
-
|
593 |
-
if col_run2.checkbox('Show top ranked documents for Run 2', key=f"{inst_index}top-2run"):
|
594 |
-
col_run2.subheader("Top N Ranked Documents")
|
595 |
-
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
|
596 |
-
show_orig_rel_ranked2 = col_run2.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs2", value=False)
|
597 |
-
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
|
598 |
-
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
|
599 |
-
|
600 |
-
|
601 |
-
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel_ranked2:
|
602 |
-
run2_top_n_docs_alt = [doc_expansion2[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
|
603 |
-
for d_idx, doc in enumerate(run2_top_n_docs):
|
604 |
-
alt_text = run2_top_n_docs_alt[d_idx]["text"]
|
605 |
-
doc_text = combine(doc["text"], alt_text, run2_uses_doc_expansion)
|
606 |
-
if use_model_saliency:
|
607 |
-
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
|
608 |
-
col_run2.markdown(get_saliency(query_text2, doc_text),unsafe_allow_html=True)
|
609 |
-
else:
|
610 |
-
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
|
611 |
-
else:
|
612 |
-
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
|
613 |
-
else:
|
614 |
-
for d_idx, doc in enumerate(run2_top_n_docs):
|
615 |
-
if use_model_saliency:
|
616 |
-
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
|
617 |
-
col_run2.markdown(get_saliency(query_text2, doc),unsafe_allow_html=True)
|
618 |
-
else:
|
619 |
-
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
|
620 |
-
else:
|
621 |
-
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
|
622 |
-
|
623 |
-
st.divider()
|
624 |
|
625 |
|
626 |
-
|
627 |
-
|
628 |
|
629 |
-
|
630 |
-
fig = create_boxplot_2df(results1, results2, metric_name)
|
631 |
-
st.plotly_chart(fig)
|
632 |
|
633 |
-
|
634 |
-
|
635 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
|
637 |
else:
|
638 |
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import pathlib
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
from collections import defaultdict
|
6 |
import json
|
7 |
import copy
|
8 |
import plotly.express as px
|
9 |
|
10 |
+
from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries
|
|
|
|
|
11 |
|
12 |
|
13 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
14 |
st.set_page_config(layout="wide")
|
15 |
|
16 |
+
current_checkboxes = []
|
17 |
+
query_input = None
|
18 |
|
19 |
+
@st.cache_data
|
20 |
+
def convert_df(df):
|
21 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
22 |
+
return df.to_csv(path_or_buf=None, index=False, quotechar='"').encode('utf-8')
|
23 |
+
|
24 |
+
|
25 |
+
def create_histogram_relevant_docs(relevant_df):
|
26 |
+
# turn results into a dataframe and then plot
|
27 |
+
fig = px.histogram(relevant_df, x="relevant_docs")
|
28 |
+
# make it fit in one column
|
29 |
+
fig.update_layout(
|
30 |
+
height=400,
|
31 |
+
width=250
|
32 |
+
)
|
33 |
+
return fig
|
34 |
|
35 |
|
36 |
+
def get_current_data():
|
37 |
+
cur_query_data = []
|
38 |
+
cur_query = query_input.replace("\n", "\\n")
|
39 |
+
for doc_id, checkbox in current_checkboxes:
|
40 |
+
if checkbox:
|
41 |
+
cur_query_data.append({
|
42 |
+
"new_narrative": cur_query,
|
43 |
+
"qid": st.session_state.selectbox_instance,
|
44 |
+
"doc_id": doc_id,
|
45 |
+
"is_relevant": 0
|
46 |
+
})
|
47 |
|
48 |
+
# return the data as a CSV pandas
|
49 |
+
return convert_df(pd.DataFrame(cur_query_data))
|
50 |
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
if 'cur_instance_num' not in st.session_state:
|
55 |
+
st.session_state.cur_instance_num = -1
|
|
|
|
|
56 |
|
57 |
|
58 |
def validate(config_option, file_loaded):
|
|
|
61 |
st.stop()
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with st.sidebar:
|
65 |
st.title("Options")
|
66 |
+
st.header("Upload corpus")
|
67 |
+
corpus_file = st.file_uploader("Choose a file", key="corpus")
|
68 |
+
corpus = load_local_corpus(corpus_file)
|
69 |
+
st.header("Upload queries")
|
70 |
+
queries_file = st.file_uploader("Choose a file", key="queries")
|
71 |
+
queries = load_local_queries(queries_file)
|
72 |
+
st.header("Upload qrels")
|
73 |
+
qrels_file = st.file_uploader("Choose a file", key="qrels")
|
74 |
+
qrels = load_local_qrels(qrels_file)
|
75 |
+
|
76 |
+
## make sure all qids in qrels are in queries and write out a warning if not
|
77 |
+
if queries is not None and qrels is not None:
|
78 |
+
missing_qids = set(qrels.keys()) - set(queries.keys()) | set(queries.keys()) - set(qrels.keys())
|
79 |
+
if len(missing_qids) > 0:
|
80 |
+
st.warning(f"The following qids in qrels are not in queries and will be deleted: {missing_qids}")
|
81 |
+
# remove them from qrels and queries
|
82 |
+
for qid in missing_qids:
|
83 |
+
if qid in qrels:
|
84 |
+
del qrels[qid]
|
85 |
+
if qid in queries:
|
86 |
+
del queries[qid]
|
87 |
+
|
88 |
+
data = []
|
89 |
+
for key, value in qrels.items():
|
90 |
+
data.append({"relevant_docs": len(value)})
|
91 |
+
relevant_df = pd.DataFrame(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
z = st.header("Analysis Options")
|
94 |
# sliderbar of how many Top N to choose
|
95 |
+
n_relevant_docs = st.slider("Number of relevant docs", 1, 999, 20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
col1, col2 = st.columns([1, 3], gap="large")
|
99 |
|
100 |
+
if corpus is not None and queries is not None and qrels is not None:
|
101 |
+
with st.sidebar:
|
102 |
+
st.success("All files uploaded")
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
with col1:
|
105 |
+
# breakpoint()
|
106 |
+
set_of_cols = set(qrels.keys())
|
107 |
+
container_for_nav = st.container()
|
108 |
+
name_of_columns = sorted([item for item in set_of_cols])
|
109 |
+
instances_to_use = name_of_columns
|
110 |
st.title("Instances")
|
111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
def sync_from_drop():
|
113 |
if st.session_state.selectbox_instance == "Overview":
|
114 |
st.session_state.number_of_col = -1
|
|
|
131 |
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
|
132 |
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
|
133 |
st.divider()
|
134 |
+
# make pie plot showing how many relevant docs there are per query histogram
|
135 |
+
st.header("Relevant Docs Per Query")
|
136 |
+
plotly_chart = create_histogram_relevant_docs(relevant_df)
|
137 |
+
st.plotly_chart(plotly_chart)
|
138 |
+
st.divider()
|
139 |
+
# now show the number with relevant docs less than `n_relevant_docs`
|
140 |
+
st.header("Relevant Docs Less Than {}:".format(n_relevant_docs))
|
141 |
+
st.subheader(f'{relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].shape[0]} Queries')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
with col2:
|
145 |
+
# get instance number
|
146 |
+
inst_index = number_of_col
|
147 |
+
|
148 |
+
if inst_index >= 0:
|
149 |
+
inst_num = instances_to_use[inst_index]
|
150 |
+
|
151 |
+
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Editor</h1>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
+
container = st.container()
|
155 |
+
|
156 |
|
157 |
+
container.divider()
|
|
|
|
|
158 |
|
159 |
+
container.subheader(f"Query")
|
160 |
+
|
161 |
+
query_text = queries[str(inst_num)].strip()
|
162 |
+
query_input = container.text_area(f"QID: {inst_num}", query_text)
|
163 |
+
container.divider()
|
164 |
+
|
165 |
+
## Documents
|
166 |
+
# relevant
|
167 |
+
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
|
168 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
169 |
+
container.subheader(f"Relevant Documents ({len(list(qrels[str(inst_num)].keys()))})")
|
170 |
+
current_checkboxes = []
|
171 |
+
for (docid, title, text) in doc_texts:
|
172 |
+
current_checkboxes.append((docid, container.checkbox(f'{docid} is Non-Relevant', key=docid)))
|
173 |
+
container.text_area(f"{docid}:", text)
|
174 |
+
|
175 |
+
|
176 |
+
container.divider()
|
177 |
+
if st.checkbox("Download data as CSV"):
|
178 |
+
st.download_button(
|
179 |
+
label="Download data as CSV",
|
180 |
+
data=get_current_data(),
|
181 |
+
file_name=f'annotation_query_{inst_num}.csv',
|
182 |
+
mime='text/csv',
|
183 |
+
)
|
184 |
+
|
185 |
+
# none checked
|
186 |
+
elif inst_index < 0:
|
187 |
+
st.title("Overview")
|
188 |
+
|
189 |
+
|
190 |
|
191 |
else:
|
192 |
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")
|
constants.py
DELETED
@@ -1,90 +0,0 @@
|
|
1 |
-
from ir_dataset_metadata import IR_DATASETS
|
2 |
-
|
3 |
-
|
4 |
-
ALL_METRICS = [
|
5 |
-
"ndcg_cut_10",
|
6 |
-
"ndcg_cut_5",
|
7 |
-
"ndcg_cut_15",
|
8 |
-
"ndcg_cut_20",
|
9 |
-
"ndcg_cut_30",
|
10 |
-
"ndcg_cut_100",
|
11 |
-
"ndcg_cut_200",
|
12 |
-
"ndcg_cut_500",
|
13 |
-
"ndcg_cut_1000",
|
14 |
-
"map",
|
15 |
-
"P_5",
|
16 |
-
"P_10",
|
17 |
-
"P_15",
|
18 |
-
"P_20",
|
19 |
-
"P_30",
|
20 |
-
"P_100",
|
21 |
-
"P_200",
|
22 |
-
"P_500",
|
23 |
-
"P_1000",
|
24 |
-
"recall_5",
|
25 |
-
"recall_10",
|
26 |
-
"recall_15",
|
27 |
-
"recall_20",
|
28 |
-
"recall_30",
|
29 |
-
"recall_100",
|
30 |
-
"recall_200",
|
31 |
-
"recall_500",
|
32 |
-
"recall_1000",
|
33 |
-
"recip_rank",
|
34 |
-
"set_recall",
|
35 |
-
"set_P",
|
36 |
-
"set_F",
|
37 |
-
"num_rel_ret",
|
38 |
-
"num_ret",
|
39 |
-
"num_rel",
|
40 |
-
"num_q",
|
41 |
-
"num_rel",
|
42 |
-
"num_rel_ret"
|
43 |
-
"Rprec",
|
44 |
-
"bpref",
|
45 |
-
"iprec_at_recall_0.00",
|
46 |
-
"iprec_at_recall_0.10",
|
47 |
-
"iprec_at_recall_0.20",
|
48 |
-
"iprec_at_recall_0.30",
|
49 |
-
"iprec_at_recall_0.40",
|
50 |
-
"iprec_at_recall_0.50",
|
51 |
-
"iprec_at_recall_0.60",
|
52 |
-
"iprec_at_recall_0.70",
|
53 |
-
"iprec_at_recall_0.80",
|
54 |
-
"iprec_at_recall_0.90",
|
55 |
-
"iprec_at_recall_1.00",
|
56 |
-
]
|
57 |
-
|
58 |
-
|
59 |
-
BEIR = [
|
60 |
-
"msmarco",
|
61 |
-
"trec-covid",
|
62 |
-
"nf_corpus",
|
63 |
-
"bioasq",
|
64 |
-
"nq",
|
65 |
-
"hotpotqa",
|
66 |
-
"fiqa",
|
67 |
-
"signal1m",
|
68 |
-
"trec-news",
|
69 |
-
"robust04",
|
70 |
-
"arguana",
|
71 |
-
"webis-touche2020",
|
72 |
-
"cqadupstack",
|
73 |
-
"quora",
|
74 |
-
"dbpedia-entity",
|
75 |
-
"scidocs",
|
76 |
-
"fever",
|
77 |
-
"climate-fever",
|
78 |
-
"scifact",
|
79 |
-
]
|
80 |
-
|
81 |
-
|
82 |
-
LOCAL_DATASETS = [
|
83 |
-
"gooaq_technical",
|
84 |
-
"codesearch_py",
|
85 |
-
]
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
ALL_DATASETS = ["", "custom"] + LOCAL_DATASETS + BEIR + IR_DATASETS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_loading.py
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import pathlib
|
4 |
-
import beir
|
5 |
-
from beir import util
|
6 |
-
from beir.datasets.data_loader import GenericDataLoader
|
7 |
-
import pytrec_eval
|
8 |
import pandas as pd
|
9 |
from collections import defaultdict
|
10 |
import json
|
11 |
import copy
|
12 |
-
import
|
13 |
|
14 |
|
15 |
-
from constants import BEIR, IR_DATASETS, LOCAL_DATASETS
|
16 |
-
|
17 |
|
18 |
@st.cache_data
|
19 |
def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]):
|
@@ -90,28 +84,6 @@ def load_local_qrels(qrels_file):
|
|
90 |
return qid2did2label
|
91 |
|
92 |
|
93 |
-
@st.cache_data
|
94 |
-
def load_run(f_run):
|
95 |
-
run = pytrec_eval.parse_run(copy.deepcopy(f_run))
|
96 |
-
# convert bytes to strings for keys
|
97 |
-
new_run = defaultdict(dict)
|
98 |
-
for key, sub_dict in run.items():
|
99 |
-
new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()}
|
100 |
-
|
101 |
-
run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t")
|
102 |
-
run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"]
|
103 |
-
run_pandas.doc_id = run_pandas.doc_id.astype(str)
|
104 |
-
run_pandas.qid = run_pandas.qid.astype(str)
|
105 |
-
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
106 |
-
run_pandas.score = run_pandas.score.astype(float)
|
107 |
-
all_groups = []
|
108 |
-
for qid, sub_df in run_pandas.groupby("qid"):
|
109 |
-
sub_df.sort_values(["score", "doc_id"], ascending=[False, False])
|
110 |
-
sub_df["rank"] = list(range(1, len(sub_df) + 1))
|
111 |
-
all_groups.append(sub_df)
|
112 |
-
run_pandas = pd.concat(all_groups)
|
113 |
-
return new_run, run_pandas
|
114 |
-
|
115 |
|
116 |
@st.cache_data
|
117 |
def load_jsonl(f):
|
@@ -137,46 +109,6 @@ def load_jsonl(f):
|
|
137 |
return did2text, sub_did2text
|
138 |
|
139 |
|
140 |
-
@st.cache_data(persist="disk")
|
141 |
-
def get_beir(dataset: str):
|
142 |
-
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
143 |
-
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
144 |
-
data_path = util.download_and_unzip(url, out_dir)
|
145 |
-
return GenericDataLoader(data_folder=data_path).load(split="test")
|
146 |
-
|
147 |
-
|
148 |
-
@st.cache_data(persist="disk")
|
149 |
-
def get_ir_datasets(dataset_name: str, input_fields_doc: str = None, input_fields_query: str = None):
|
150 |
-
dataset = ir_datasets.load(dataset_name)
|
151 |
-
queries = {}
|
152 |
-
for qid, query in dataset.queries_iter():
|
153 |
-
if input_fields_query is None:
|
154 |
-
if type(query) == str:
|
155 |
-
queries[qid] = query
|
156 |
-
else:
|
157 |
-
# get all fields that exist in query
|
158 |
-
all_fields = {field: getattr(query, field) for field in query._fields}
|
159 |
-
# put all fields into a single string
|
160 |
-
queries[qid] = " ".join([str(v) for v in all_fields.values()])
|
161 |
-
else:
|
162 |
-
all_fields = {field: getattr(query, field) for field in input_fields_query}
|
163 |
-
queries[qid] = " ".join([str(v) for v in all_fields.values()])
|
164 |
-
|
165 |
-
corpus = {}
|
166 |
-
for doc in dataset.docs_iter():
|
167 |
-
if input_fields_doc is None:
|
168 |
-
if type(doc) == str:
|
169 |
-
corpus[doc.doc_id] = {"text": doc}
|
170 |
-
else: # get all fields that exist in query
|
171 |
-
all_fields = {field: getattr(doc, field) for field in doc._fields}
|
172 |
-
corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}
|
173 |
-
else:
|
174 |
-
all_fields = {field: getattr(doc, field) for field in input_fields_doc}
|
175 |
-
corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}
|
176 |
-
|
177 |
-
# return corpus, queries, qrels
|
178 |
-
return corpus, queries, dataset.qrels_dict()
|
179 |
-
|
180 |
|
181 |
@st.cache_data(persist="disk")
|
182 |
def get_dataset(dataset_name: str, input_fields_doc, input_fields_query):
|
@@ -188,15 +120,5 @@ def get_dataset(dataset_name: str, input_fields_doc, input_fields_query):
|
|
188 |
if dataset_name == "":
|
189 |
return {}, {}, {}
|
190 |
|
191 |
-
if dataset_name in BEIR:
|
192 |
-
return get_beir(dataset_name)
|
193 |
-
elif dataset_name in IR_DATASETS:
|
194 |
-
return get_ir_datasets(dataset_name, input_fields_doc, input_fields_query)
|
195 |
-
elif dataset_name in LOCAL_DATASETS:
|
196 |
-
base_path = f"local_datasets/{dataset_name}"
|
197 |
-
corpus_file = open(f"{base_path}/corpus.jsonl", "r")
|
198 |
-
queries_file = open(f"{base_path}/queries.jsonl", "r")
|
199 |
-
qrels_file = open(f"{base_path}/qrels/test.tsv", "r")
|
200 |
-
return load_local_corpus(corpus_file), load_local_queries(queries_file), load_local_qrels(qrels_file)
|
201 |
else:
|
202 |
raise NotImplementedError("Dataset not implemented")
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import pathlib
|
|
|
|
|
|
|
|
|
4 |
import pandas as pd
|
5 |
from collections import defaultdict
|
6 |
import json
|
7 |
import copy
|
8 |
+
import plotly.express as px
|
9 |
|
10 |
|
|
|
|
|
11 |
|
12 |
@st.cache_data
|
13 |
def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]):
|
|
|
84 |
return qid2did2label
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
@st.cache_data
|
89 |
def load_jsonl(f):
|
|
|
109 |
return did2text, sub_did2text
|
110 |
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
@st.cache_data(persist="disk")
|
114 |
def get_dataset(dataset_name: str, input_fields_doc, input_fields_query):
|
|
|
120 |
if dataset_name == "":
|
121 |
return {}, {}, {}
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
else:
|
124 |
raise NotImplementedError("Dataset not implemented")
|
ir_dataset_metadata.py
DELETED
@@ -1,486 +0,0 @@
|
|
1 |
-
|
2 |
-
IR_DATASETS = [
|
3 |
-
"antique/test",
|
4 |
-
"antique/test/non-offensive",
|
5 |
-
"antique/train",
|
6 |
-
"antique/train/split200-train",
|
7 |
-
"antique/train/split200-valid",
|
8 |
-
"aol-ia",
|
9 |
-
"aquaint/trec-robust-2005",
|
10 |
-
"argsme/1.0/touche-2020-task-1/uncorrected",
|
11 |
-
"argsme/2020-04-01/processed/touche-2022-task-1",
|
12 |
-
"argsme/2020-04-01/touche-2020-task-1",
|
13 |
-
"argsme/2020-04-01/touche-2020-task-1/uncorrected",
|
14 |
-
"argsme/2020-04-01/touche-2021-task-1",
|
15 |
-
"beir/arguana",
|
16 |
-
"beir/climate-fever",
|
17 |
-
"beir/cqadupstack/android",
|
18 |
-
"beir/cqadupstack/english",
|
19 |
-
"beir/cqadupstack/gaming",
|
20 |
-
"beir/cqadupstack/gis",
|
21 |
-
"beir/cqadupstack/mathematica",
|
22 |
-
"beir/cqadupstack/physics",
|
23 |
-
"beir/cqadupstack/programmers",
|
24 |
-
"beir/cqadupstack/stats",
|
25 |
-
"beir/cqadupstack/tex",
|
26 |
-
"beir/cqadupstack/unix",
|
27 |
-
"beir/cqadupstack/webmasters",
|
28 |
-
"beir/cqadupstack/wordpress",
|
29 |
-
"beir/dbpedia-entity/dev",
|
30 |
-
"beir/dbpedia-entity/test",
|
31 |
-
"beir/fever/dev",
|
32 |
-
"beir/fever/test",
|
33 |
-
"beir/fever/train",
|
34 |
-
"beir/fiqa/dev",
|
35 |
-
"beir/fiqa/test",
|
36 |
-
"beir/fiqa/train",
|
37 |
-
"beir/hotpotqa/dev",
|
38 |
-
"beir/hotpotqa/test",
|
39 |
-
"beir/hotpotqa/train",
|
40 |
-
"beir/msmarco/dev",
|
41 |
-
"beir/msmarco/test",
|
42 |
-
"beir/msmarco/train",
|
43 |
-
"beir/nfcorpus/dev",
|
44 |
-
"beir/nfcorpus/test",
|
45 |
-
"beir/nfcorpus/train",
|
46 |
-
"beir/nq",
|
47 |
-
"beir/quora/dev",
|
48 |
-
"beir/quora/test",
|
49 |
-
"beir/scidocs",
|
50 |
-
"beir/scifact/test",
|
51 |
-
"beir/scifact/train",
|
52 |
-
"beir/trec-covid",
|
53 |
-
"beir/webis-touche2020",
|
54 |
-
"beir/webis-touche2020/v2",
|
55 |
-
"car/v1.5/test200",
|
56 |
-
"car/v1.5/train/fold0",
|
57 |
-
"car/v1.5/train/fold1",
|
58 |
-
"car/v1.5/train/fold2",
|
59 |
-
"car/v1.5/train/fold3",
|
60 |
-
"car/v1.5/train/fold4",
|
61 |
-
"car/v1.5/trec-y1/auto",
|
62 |
-
"car/v1.5/trec-y1/manual",
|
63 |
-
"clinicaltrials/2017/trec-pm-2017",
|
64 |
-
"clinicaltrials/2017/trec-pm-2018",
|
65 |
-
"clinicaltrials/2019/trec-pm-2019",
|
66 |
-
"clinicaltrials/2021/trec-ct-2021",
|
67 |
-
"clueweb09/catb/trec-web-2009",
|
68 |
-
"clueweb09/catb/trec-web-2009/diversity",
|
69 |
-
"clueweb09/catb/trec-web-2010",
|
70 |
-
"clueweb09/catb/trec-web-2010/diversity",
|
71 |
-
"clueweb09/catb/trec-web-2011",
|
72 |
-
"clueweb09/catb/trec-web-2011/diversity",
|
73 |
-
"clueweb09/catb/trec-web-2012",
|
74 |
-
"clueweb09/catb/trec-web-2012/diversity",
|
75 |
-
"clueweb09/en/trec-web-2009",
|
76 |
-
"clueweb09/en/trec-web-2009/diversity",
|
77 |
-
"clueweb09/en/trec-web-2010",
|
78 |
-
"clueweb09/en/trec-web-2010/diversity",
|
79 |
-
"clueweb09/en/trec-web-2011",
|
80 |
-
"clueweb09/en/trec-web-2011/diversity",
|
81 |
-
"clueweb09/en/trec-web-2012",
|
82 |
-
"clueweb09/en/trec-web-2012/diversity",
|
83 |
-
"clueweb09/trec-mq-2009",
|
84 |
-
"clueweb12/b13/clef-ehealth",
|
85 |
-
"clueweb12/b13/clef-ehealth/cs",
|
86 |
-
"clueweb12/b13/clef-ehealth/de",
|
87 |
-
"clueweb12/b13/clef-ehealth/fr",
|
88 |
-
"clueweb12/b13/clef-ehealth/hu",
|
89 |
-
"clueweb12/b13/clef-ehealth/pl",
|
90 |
-
"clueweb12/b13/clef-ehealth/sv",
|
91 |
-
"clueweb12/b13/ntcir-www-1",
|
92 |
-
"clueweb12/b13/ntcir-www-2",
|
93 |
-
"clueweb12/b13/trec-misinfo-2019",
|
94 |
-
"clueweb12/touche-2020-task-2",
|
95 |
-
"clueweb12/touche-2021-task-2",
|
96 |
-
"clueweb12/touche-2022-task-2",
|
97 |
-
"clueweb12/touche-2022-task-2/expanded-doc-t5-query",
|
98 |
-
"clueweb12/trec-web-2013",
|
99 |
-
"clueweb12/trec-web-2013/diversity",
|
100 |
-
"clueweb12/trec-web-2014",
|
101 |
-
"clueweb12/trec-web-2014/diversity",
|
102 |
-
"codec",
|
103 |
-
"codec/economics",
|
104 |
-
"codec/history",
|
105 |
-
"codec/politics",
|
106 |
-
"codesearchnet/challenge",
|
107 |
-
"codesearchnet/test",
|
108 |
-
"codesearchnet/train",
|
109 |
-
"codesearchnet/valid",
|
110 |
-
"cord19/fulltext/trec-covid",
|
111 |
-
"cord19/trec-covid",
|
112 |
-
"cord19/trec-covid/round1",
|
113 |
-
"cord19/trec-covid/round2",
|
114 |
-
"cord19/trec-covid/round3",
|
115 |
-
"cord19/trec-covid/round4",
|
116 |
-
"cord19/trec-covid/round5",
|
117 |
-
"cranfield",
|
118 |
-
"disks45/nocr/trec-robust-2004",
|
119 |
-
"disks45/nocr/trec-robust-2004/fold1",
|
120 |
-
"disks45/nocr/trec-robust-2004/fold2",
|
121 |
-
"disks45/nocr/trec-robust-2004/fold3",
|
122 |
-
"disks45/nocr/trec-robust-2004/fold4",
|
123 |
-
"disks45/nocr/trec-robust-2004/fold5",
|
124 |
-
"disks45/nocr/trec7",
|
125 |
-
"disks45/nocr/trec8",
|
126 |
-
"dpr-w100/natural-questions/dev",
|
127 |
-
"dpr-w100/natural-questions/train",
|
128 |
-
"dpr-w100/trivia-qa/dev",
|
129 |
-
"dpr-w100/trivia-qa/train",
|
130 |
-
"gov/trec-web-2002",
|
131 |
-
"gov/trec-web-2002/named-page",
|
132 |
-
"gov/trec-web-2003",
|
133 |
-
"gov/trec-web-2003/named-page",
|
134 |
-
"gov/trec-web-2004",
|
135 |
-
"gov2/trec-mq-2007",
|
136 |
-
"gov2/trec-mq-2008",
|
137 |
-
"gov2/trec-tb-2004",
|
138 |
-
"gov2/trec-tb-2005",
|
139 |
-
"gov2/trec-tb-2005/efficiency",
|
140 |
-
"gov2/trec-tb-2005/named-page",
|
141 |
-
"gov2/trec-tb-2006",
|
142 |
-
"gov2/trec-tb-2006/efficiency",
|
143 |
-
"gov2/trec-tb-2006/efficiency/stream3",
|
144 |
-
"gov2/trec-tb-2006/named-page",
|
145 |
-
"hc4/fa/dev",
|
146 |
-
"hc4/fa/test",
|
147 |
-
"hc4/fa/train",
|
148 |
-
"hc4/ru/dev",
|
149 |
-
"hc4/ru/test",
|
150 |
-
"hc4/ru/train",
|
151 |
-
"hc4/zh/dev",
|
152 |
-
"hc4/zh/test",
|
153 |
-
"hc4/zh/train",
|
154 |
-
"highwire/trec-genomics-2006",
|
155 |
-
"highwire/trec-genomics-2007",
|
156 |
-
"istella22/test",
|
157 |
-
"istella22/test/fold1",
|
158 |
-
"istella22/test/fold2",
|
159 |
-
"istella22/test/fold3",
|
160 |
-
"istella22/test/fold4",
|
161 |
-
"istella22/test/fold5",
|
162 |
-
"kilt/codec",
|
163 |
-
"kilt/codec/economics",
|
164 |
-
"kilt/codec/history",
|
165 |
-
"kilt/codec/politics",
|
166 |
-
"lotte/lifestyle/dev/forum",
|
167 |
-
"lotte/lifestyle/dev/search",
|
168 |
-
"lotte/lifestyle/test/forum",
|
169 |
-
"lotte/lifestyle/test/search",
|
170 |
-
"lotte/pooled/dev/forum",
|
171 |
-
"lotte/pooled/dev/search",
|
172 |
-
"lotte/pooled/test/forum",
|
173 |
-
"lotte/pooled/test/search",
|
174 |
-
"lotte/recreation/dev/forum",
|
175 |
-
"lotte/recreation/dev/search",
|
176 |
-
"lotte/recreation/test/forum",
|
177 |
-
"lotte/recreation/test/search",
|
178 |
-
"lotte/science/dev/forum",
|
179 |
-
"lotte/science/dev/search",
|
180 |
-
"lotte/science/test/forum",
|
181 |
-
"lotte/science/test/search",
|
182 |
-
"lotte/technology/dev/forum",
|
183 |
-
"lotte/technology/dev/search",
|
184 |
-
"lotte/technology/test/forum",
|
185 |
-
"lotte/technology/test/search",
|
186 |
-
"lotte/writing/dev/forum",
|
187 |
-
"lotte/writing/dev/search",
|
188 |
-
"lotte/writing/test/forum",
|
189 |
-
"lotte/writing/test/search",
|
190 |
-
"medline/2004/trec-genomics-2004",
|
191 |
-
"medline/2004/trec-genomics-2005",
|
192 |
-
"medline/2017/trec-pm-2017",
|
193 |
-
"medline/2017/trec-pm-2018",
|
194 |
-
"mmarco/de/dev",
|
195 |
-
"mmarco/de/dev/small",
|
196 |
-
"mmarco/de/train",
|
197 |
-
"mmarco/es/dev",
|
198 |
-
"mmarco/es/dev/small",
|
199 |
-
"mmarco/es/train",
|
200 |
-
"mmarco/fr/dev",
|
201 |
-
"mmarco/fr/dev/small",
|
202 |
-
"mmarco/fr/train",
|
203 |
-
"mmarco/id/dev",
|
204 |
-
"mmarco/id/dev/small",
|
205 |
-
"mmarco/id/train",
|
206 |
-
"mmarco/it/dev",
|
207 |
-
"mmarco/it/dev/small",
|
208 |
-
"mmarco/it/train",
|
209 |
-
"mmarco/pt/dev",
|
210 |
-
"mmarco/pt/dev/small",
|
211 |
-
"mmarco/pt/dev/small/v1.1",
|
212 |
-
"mmarco/pt/dev/v1.1",
|
213 |
-
"mmarco/pt/train",
|
214 |
-
"mmarco/pt/train/v1.1",
|
215 |
-
"mmarco/ru/dev",
|
216 |
-
"mmarco/ru/dev/small",
|
217 |
-
"mmarco/ru/train",
|
218 |
-
"mmarco/v2/ar/dev",
|
219 |
-
"mmarco/v2/ar/dev/small",
|
220 |
-
"mmarco/v2/ar/train",
|
221 |
-
"mmarco/v2/de/dev",
|
222 |
-
"mmarco/v2/de/dev/small",
|
223 |
-
"mmarco/v2/de/train",
|
224 |
-
"mmarco/v2/dt/dev",
|
225 |
-
"mmarco/v2/dt/dev/small",
|
226 |
-
"mmarco/v2/dt/train",
|
227 |
-
"mmarco/v2/es/dev",
|
228 |
-
"mmarco/v2/es/dev/small",
|
229 |
-
"mmarco/v2/es/train",
|
230 |
-
"mmarco/v2/fr/dev",
|
231 |
-
"mmarco/v2/fr/dev/small",
|
232 |
-
"mmarco/v2/fr/train",
|
233 |
-
"mmarco/v2/hi/dev",
|
234 |
-
"mmarco/v2/hi/dev/small",
|
235 |
-
"mmarco/v2/hi/train",
|
236 |
-
"mmarco/v2/id/dev",
|
237 |
-
"mmarco/v2/id/dev/small",
|
238 |
-
"mmarco/v2/id/train",
|
239 |
-
"mmarco/v2/it/dev",
|
240 |
-
"mmarco/v2/it/dev/small",
|
241 |
-
"mmarco/v2/it/train",
|
242 |
-
"mmarco/v2/ja/dev",
|
243 |
-
"mmarco/v2/ja/dev/small",
|
244 |
-
"mmarco/v2/ja/train",
|
245 |
-
"mmarco/v2/pt/dev",
|
246 |
-
"mmarco/v2/pt/dev/small",
|
247 |
-
"mmarco/v2/pt/train",
|
248 |
-
"mmarco/v2/ru/dev",
|
249 |
-
"mmarco/v2/ru/dev/small",
|
250 |
-
"mmarco/v2/ru/train",
|
251 |
-
"mmarco/v2/vi/dev",
|
252 |
-
"mmarco/v2/vi/dev/small",
|
253 |
-
"mmarco/v2/vi/train",
|
254 |
-
"mmarco/v2/zh/dev",
|
255 |
-
"mmarco/v2/zh/dev/small",
|
256 |
-
"mmarco/v2/zh/train",
|
257 |
-
"mmarco/zh/dev",
|
258 |
-
"mmarco/zh/dev/small",
|
259 |
-
"mmarco/zh/dev/small/v1.1",
|
260 |
-
"mmarco/zh/dev/v1.1",
|
261 |
-
"mmarco/zh/train",
|
262 |
-
"mr-tydi/ar",
|
263 |
-
"mr-tydi/ar/dev",
|
264 |
-
"mr-tydi/ar/test",
|
265 |
-
"mr-tydi/ar/train",
|
266 |
-
"mr-tydi/bn",
|
267 |
-
"mr-tydi/bn/dev",
|
268 |
-
"mr-tydi/bn/test",
|
269 |
-
"mr-tydi/bn/train",
|
270 |
-
"mr-tydi/en",
|
271 |
-
"mr-tydi/en/dev",
|
272 |
-
"mr-tydi/en/test",
|
273 |
-
"mr-tydi/en/train",
|
274 |
-
"mr-tydi/fi",
|
275 |
-
"mr-tydi/fi/dev",
|
276 |
-
"mr-tydi/fi/test",
|
277 |
-
"mr-tydi/fi/train",
|
278 |
-
"mr-tydi/id",
|
279 |
-
"mr-tydi/id/dev",
|
280 |
-
"mr-tydi/id/test",
|
281 |
-
"mr-tydi/id/train",
|
282 |
-
"mr-tydi/ja",
|
283 |
-
"mr-tydi/ja/dev",
|
284 |
-
"mr-tydi/ja/test",
|
285 |
-
"mr-tydi/ja/train",
|
286 |
-
"mr-tydi/ko",
|
287 |
-
"mr-tydi/ko/dev",
|
288 |
-
"mr-tydi/ko/test",
|
289 |
-
"mr-tydi/ko/train",
|
290 |
-
"mr-tydi/ru",
|
291 |
-
"mr-tydi/ru/dev",
|
292 |
-
"mr-tydi/ru/test",
|
293 |
-
"mr-tydi/ru/train",
|
294 |
-
"mr-tydi/sw",
|
295 |
-
"mr-tydi/sw/dev",
|
296 |
-
"mr-tydi/sw/test",
|
297 |
-
"mr-tydi/sw/train",
|
298 |
-
"mr-tydi/te",
|
299 |
-
"mr-tydi/te/dev",
|
300 |
-
"mr-tydi/te/test",
|
301 |
-
"mr-tydi/te/train",
|
302 |
-
"mr-tydi/th",
|
303 |
-
"mr-tydi/th/dev",
|
304 |
-
"mr-tydi/th/test",
|
305 |
-
"mr-tydi/th/train",
|
306 |
-
"msmarco-document-v2/dev1",
|
307 |
-
"msmarco-document-v2/dev2",
|
308 |
-
"msmarco-document-v2/train",
|
309 |
-
"msmarco-document-v2/trec-dl-2019",
|
310 |
-
"msmarco-document-v2/trec-dl-2019/judged",
|
311 |
-
"msmarco-document-v2/trec-dl-2020",
|
312 |
-
"msmarco-document-v2/trec-dl-2020/judged",
|
313 |
-
"msmarco-document-v2/trec-dl-2021",
|
314 |
-
"msmarco-document-v2/trec-dl-2021/judged",
|
315 |
-
"msmarco-document-v2/trec-dl-2022",
|
316 |
-
"msmarco-document-v2/trec-dl-2022/judged",
|
317 |
-
"msmarco-document/dev",
|
318 |
-
"msmarco-document/orcas",
|
319 |
-
"msmarco-document/train",
|
320 |
-
"msmarco-document/trec-dl-2019",
|
321 |
-
"msmarco-document/trec-dl-2019/judged",
|
322 |
-
"msmarco-document/trec-dl-2020",
|
323 |
-
"msmarco-document/trec-dl-2020/judged",
|
324 |
-
"msmarco-document/trec-dl-hard",
|
325 |
-
"msmarco-document/trec-dl-hard/fold1",
|
326 |
-
"msmarco-document/trec-dl-hard/fold2",
|
327 |
-
"msmarco-document/trec-dl-hard/fold3",
|
328 |
-
"msmarco-document/trec-dl-hard/fold4",
|
329 |
-
"msmarco-document/trec-dl-hard/fold5",
|
330 |
-
"msmarco-passage-v2/dev1",
|
331 |
-
"msmarco-passage-v2/dev2",
|
332 |
-
"msmarco-passage-v2/train",
|
333 |
-
"msmarco-passage-v2/trec-dl-2021",
|
334 |
-
"msmarco-passage-v2/trec-dl-2021/judged",
|
335 |
-
"msmarco-passage-v2/trec-dl-2022",
|
336 |
-
"msmarco-passage-v2/trec-dl-2022/judged",
|
337 |
-
"msmarco-passage/dev",
|
338 |
-
"msmarco-passage/dev/2",
|
339 |
-
"msmarco-passage/dev/judged",
|
340 |
-
"msmarco-passage/dev/small",
|
341 |
-
"msmarco-passage/train",
|
342 |
-
"msmarco-passage/train/judged",
|
343 |
-
"msmarco-passage/train/medical",
|
344 |
-
"msmarco-passage/train/split200-train",
|
345 |
-
"msmarco-passage/train/split200-valid",
|
346 |
-
"msmarco-passage/train/triples-small",
|
347 |
-
"msmarco-passage/train/triples-v2",
|
348 |
-
"msmarco-passage/trec-dl-2019",
|
349 |
-
"msmarco-passage/trec-dl-2019/judged",
|
350 |
-
"msmarco-passage/trec-dl-2020",
|
351 |
-
"msmarco-passage/trec-dl-2020/judged",
|
352 |
-
"msmarco-passage/trec-dl-hard",
|
353 |
-
"msmarco-passage/trec-dl-hard/fold1",
|
354 |
-
"msmarco-passage/trec-dl-hard/fold2",
|
355 |
-
"msmarco-passage/trec-dl-hard/fold3",
|
356 |
-
"msmarco-passage/trec-dl-hard/fold4",
|
357 |
-
"msmarco-passage/trec-dl-hard/fold5",
|
358 |
-
"msmarco-qna/dev",
|
359 |
-
"msmarco-qna/train",
|
360 |
-
"natural-questions/dev",
|
361 |
-
"natural-questions/train",
|
362 |
-
"neuclir/1/fa/hc4-filtered",
|
363 |
-
"neuclir/1/ru/hc4-filtered",
|
364 |
-
"neuclir/1/zh/hc4-filtered",
|
365 |
-
"neumarco/fa/dev",
|
366 |
-
"neumarco/fa/dev/judged",
|
367 |
-
"neumarco/fa/dev/small",
|
368 |
-
"neumarco/fa/train",
|
369 |
-
"neumarco/fa/train/judged",
|
370 |
-
"neumarco/ru/dev",
|
371 |
-
"neumarco/ru/dev/judged",
|
372 |
-
"neumarco/ru/dev/small",
|
373 |
-
"neumarco/ru/train",
|
374 |
-
"neumarco/ru/train/judged",
|
375 |
-
"neumarco/zh/dev",
|
376 |
-
"neumarco/zh/dev/judged",
|
377 |
-
"neumarco/zh/dev/small",
|
378 |
-
"neumarco/zh/train",
|
379 |
-
"neumarco/zh/train/judged",
|
380 |
-
"nfcorpus/dev",
|
381 |
-
"nfcorpus/dev/nontopic",
|
382 |
-
"nfcorpus/dev/video",
|
383 |
-
"nfcorpus/test",
|
384 |
-
"nfcorpus/test/nontopic",
|
385 |
-
"nfcorpus/test/video",
|
386 |
-
"nfcorpus/train",
|
387 |
-
"nfcorpus/train/nontopic",
|
388 |
-
"nfcorpus/train/video",
|
389 |
-
"nyt/trec-core-2017",
|
390 |
-
"nyt/wksup",
|
391 |
-
"nyt/wksup/train",
|
392 |
-
"nyt/wksup/valid",
|
393 |
-
"pmc/v1/trec-cds-2014",
|
394 |
-
"pmc/v1/trec-cds-2015",
|
395 |
-
"pmc/v2/trec-cds-2016",
|
396 |
-
"sara",
|
397 |
-
"touche-image/2022-06-13/touche-2022-task-3",
|
398 |
-
"trec-arabic/ar2001",
|
399 |
-
"trec-arabic/ar2002",
|
400 |
-
"trec-cast/v0/train",
|
401 |
-
"trec-cast/v0/train/judged",
|
402 |
-
"trec-cast/v1/2019",
|
403 |
-
"trec-cast/v1/2019/judged",
|
404 |
-
"trec-cast/v1/2020",
|
405 |
-
"trec-cast/v1/2020/judged",
|
406 |
-
"trec-fair-2021/eval",
|
407 |
-
"trec-fair-2021/train",
|
408 |
-
"trec-fair/2021/eval",
|
409 |
-
"trec-fair/2021/train",
|
410 |
-
"trec-fair/2022/train",
|
411 |
-
"trec-mandarin/trec5",
|
412 |
-
"trec-mandarin/trec6",
|
413 |
-
"trec-robust04",
|
414 |
-
"trec-robust04/fold1",
|
415 |
-
"trec-robust04/fold2",
|
416 |
-
"trec-robust04/fold3",
|
417 |
-
"trec-robust04/fold4",
|
418 |
-
"trec-robust04/fold5",
|
419 |
-
"trec-spanish/trec3",
|
420 |
-
"trec-spanish/trec4",
|
421 |
-
"trec-tot/2023/dev",
|
422 |
-
"trec-tot/2023/train",
|
423 |
-
"tripclick/train",
|
424 |
-
"tripclick/train/head",
|
425 |
-
"tripclick/train/head/dctr",
|
426 |
-
"tripclick/train/hofstaetter-triples",
|
427 |
-
"tripclick/train/tail",
|
428 |
-
"tripclick/train/torso",
|
429 |
-
"tripclick/val",
|
430 |
-
"tripclick/val/head",
|
431 |
-
"tripclick/val/head/dctr",
|
432 |
-
"tripclick/val/tail",
|
433 |
-
"tripclick/val/torso",
|
434 |
-
"tweets2013-ia/trec-mb-2013",
|
435 |
-
"tweets2013-ia/trec-mb-2014",
|
436 |
-
"vaswani",
|
437 |
-
"wapo/v2/trec-core-2018",
|
438 |
-
"wapo/v2/trec-news-2018",
|
439 |
-
"wapo/v2/trec-news-2019",
|
440 |
-
"wikiclir/ar",
|
441 |
-
"wikiclir/ca",
|
442 |
-
"wikiclir/cs",
|
443 |
-
"wikiclir/de",
|
444 |
-
"wikiclir/en-simple",
|
445 |
-
"wikiclir/es",
|
446 |
-
"wikiclir/fi",
|
447 |
-
"wikiclir/fr",
|
448 |
-
"wikiclir/it",
|
449 |
-
"wikiclir/ja",
|
450 |
-
"wikiclir/ko",
|
451 |
-
"wikiclir/nl",
|
452 |
-
"wikiclir/nn",
|
453 |
-
"wikiclir/no",
|
454 |
-
"wikiclir/pl",
|
455 |
-
"wikiclir/pt",
|
456 |
-
"wikiclir/ro",
|
457 |
-
"wikiclir/ru",
|
458 |
-
"wikiclir/sv",
|
459 |
-
"wikiclir/sw",
|
460 |
-
"wikiclir/tl",
|
461 |
-
"wikiclir/tr",
|
462 |
-
"wikiclir/uk",
|
463 |
-
"wikiclir/vi",
|
464 |
-
"wikiclir/zh",
|
465 |
-
"wikir/en1k/test",
|
466 |
-
"wikir/en1k/training",
|
467 |
-
"wikir/en1k/validation",
|
468 |
-
"wikir/en59k/test",
|
469 |
-
"wikir/en59k/training",
|
470 |
-
"wikir/en59k/validation",
|
471 |
-
"wikir/en78k/test",
|
472 |
-
"wikir/en78k/training",
|
473 |
-
"wikir/en78k/validation",
|
474 |
-
"wikir/ens78k/test",
|
475 |
-
"wikir/ens78k/training",
|
476 |
-
"wikir/ens78k/validation",
|
477 |
-
"wikir/es13k/test",
|
478 |
-
"wikir/es13k/training",
|
479 |
-
"wikir/es13k/validation",
|
480 |
-
"wikir/fr14k/test",
|
481 |
-
"wikir/fr14k/training",
|
482 |
-
"wikir/fr14k/validation",
|
483 |
-
"wikir/it16k/test",
|
484 |
-
"wikir/it16k/training",
|
485 |
-
"wikir/it16k/validation"
|
486 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ir_dataset_names.json
DELETED
@@ -1,485 +0,0 @@
|
|
1 |
-
[
|
2 |
-
"antique/test",
|
3 |
-
"antique/test/non-offensive",
|
4 |
-
"antique/train",
|
5 |
-
"antique/train/split200-train",
|
6 |
-
"antique/train/split200-valid",
|
7 |
-
"aol-ia",
|
8 |
-
"aquaint/trec-robust-2005",
|
9 |
-
"argsme/1.0/touche-2020-task-1/uncorrected",
|
10 |
-
"argsme/2020-04-01/processed/touche-2022-task-1",
|
11 |
-
"argsme/2020-04-01/touche-2020-task-1",
|
12 |
-
"argsme/2020-04-01/touche-2020-task-1/uncorrected",
|
13 |
-
"argsme/2020-04-01/touche-2021-task-1",
|
14 |
-
"beir/arguana",
|
15 |
-
"beir/climate-fever",
|
16 |
-
"beir/cqadupstack/android",
|
17 |
-
"beir/cqadupstack/english",
|
18 |
-
"beir/cqadupstack/gaming",
|
19 |
-
"beir/cqadupstack/gis",
|
20 |
-
"beir/cqadupstack/mathematica",
|
21 |
-
"beir/cqadupstack/physics",
|
22 |
-
"beir/cqadupstack/programmers",
|
23 |
-
"beir/cqadupstack/stats",
|
24 |
-
"beir/cqadupstack/tex",
|
25 |
-
"beir/cqadupstack/unix",
|
26 |
-
"beir/cqadupstack/webmasters",
|
27 |
-
"beir/cqadupstack/wordpress",
|
28 |
-
"beir/dbpedia-entity/dev",
|
29 |
-
"beir/dbpedia-entity/test",
|
30 |
-
"beir/fever/dev",
|
31 |
-
"beir/fever/test",
|
32 |
-
"beir/fever/train",
|
33 |
-
"beir/fiqa/dev",
|
34 |
-
"beir/fiqa/test",
|
35 |
-
"beir/fiqa/train",
|
36 |
-
"beir/hotpotqa/dev",
|
37 |
-
"beir/hotpotqa/test",
|
38 |
-
"beir/hotpotqa/train",
|
39 |
-
"beir/msmarco/dev",
|
40 |
-
"beir/msmarco/test",
|
41 |
-
"beir/msmarco/train",
|
42 |
-
"beir/nfcorpus/dev",
|
43 |
-
"beir/nfcorpus/test",
|
44 |
-
"beir/nfcorpus/train",
|
45 |
-
"beir/nq",
|
46 |
-
"beir/quora/dev",
|
47 |
-
"beir/quora/test",
|
48 |
-
"beir/scidocs",
|
49 |
-
"beir/scifact/test",
|
50 |
-
"beir/scifact/train",
|
51 |
-
"beir/trec-covid",
|
52 |
-
"beir/webis-touche2020",
|
53 |
-
"beir/webis-touche2020/v2",
|
54 |
-
"car/v1.5/test200",
|
55 |
-
"car/v1.5/train/fold0",
|
56 |
-
"car/v1.5/train/fold1",
|
57 |
-
"car/v1.5/train/fold2",
|
58 |
-
"car/v1.5/train/fold3",
|
59 |
-
"car/v1.5/train/fold4",
|
60 |
-
"car/v1.5/trec-y1/auto",
|
61 |
-
"car/v1.5/trec-y1/manual",
|
62 |
-
"clinicaltrials/2017/trec-pm-2017",
|
63 |
-
"clinicaltrials/2017/trec-pm-2018",
|
64 |
-
"clinicaltrials/2019/trec-pm-2019",
|
65 |
-
"clinicaltrials/2021/trec-ct-2021",
|
66 |
-
"clueweb09/catb/trec-web-2009",
|
67 |
-
"clueweb09/catb/trec-web-2009/diversity",
|
68 |
-
"clueweb09/catb/trec-web-2010",
|
69 |
-
"clueweb09/catb/trec-web-2010/diversity",
|
70 |
-
"clueweb09/catb/trec-web-2011",
|
71 |
-
"clueweb09/catb/trec-web-2011/diversity",
|
72 |
-
"clueweb09/catb/trec-web-2012",
|
73 |
-
"clueweb09/catb/trec-web-2012/diversity",
|
74 |
-
"clueweb09/en/trec-web-2009",
|
75 |
-
"clueweb09/en/trec-web-2009/diversity",
|
76 |
-
"clueweb09/en/trec-web-2010",
|
77 |
-
"clueweb09/en/trec-web-2010/diversity",
|
78 |
-
"clueweb09/en/trec-web-2011",
|
79 |
-
"clueweb09/en/trec-web-2011/diversity",
|
80 |
-
"clueweb09/en/trec-web-2012",
|
81 |
-
"clueweb09/en/trec-web-2012/diversity",
|
82 |
-
"clueweb09/trec-mq-2009",
|
83 |
-
"clueweb12/b13/clef-ehealth",
|
84 |
-
"clueweb12/b13/clef-ehealth/cs",
|
85 |
-
"clueweb12/b13/clef-ehealth/de",
|
86 |
-
"clueweb12/b13/clef-ehealth/fr",
|
87 |
-
"clueweb12/b13/clef-ehealth/hu",
|
88 |
-
"clueweb12/b13/clef-ehealth/pl",
|
89 |
-
"clueweb12/b13/clef-ehealth/sv",
|
90 |
-
"clueweb12/b13/ntcir-www-1",
|
91 |
-
"clueweb12/b13/ntcir-www-2",
|
92 |
-
"clueweb12/b13/trec-misinfo-2019",
|
93 |
-
"clueweb12/touche-2020-task-2",
|
94 |
-
"clueweb12/touche-2021-task-2",
|
95 |
-
"clueweb12/touche-2022-task-2",
|
96 |
-
"clueweb12/touche-2022-task-2/expanded-doc-t5-query",
|
97 |
-
"clueweb12/trec-web-2013",
|
98 |
-
"clueweb12/trec-web-2013/diversity",
|
99 |
-
"clueweb12/trec-web-2014",
|
100 |
-
"clueweb12/trec-web-2014/diversity",
|
101 |
-
"codec",
|
102 |
-
"codec/economics",
|
103 |
-
"codec/history",
|
104 |
-
"codec/politics",
|
105 |
-
"codesearchnet/challenge",
|
106 |
-
"codesearchnet/test",
|
107 |
-
"codesearchnet/train",
|
108 |
-
"codesearchnet/valid",
|
109 |
-
"cord19/fulltext/trec-covid",
|
110 |
-
"cord19/trec-covid",
|
111 |
-
"cord19/trec-covid/round1",
|
112 |
-
"cord19/trec-covid/round2",
|
113 |
-
"cord19/trec-covid/round3",
|
114 |
-
"cord19/trec-covid/round4",
|
115 |
-
"cord19/trec-covid/round5",
|
116 |
-
"cranfield",
|
117 |
-
"disks45/nocr/trec-robust-2004",
|
118 |
-
"disks45/nocr/trec-robust-2004/fold1",
|
119 |
-
"disks45/nocr/trec-robust-2004/fold2",
|
120 |
-
"disks45/nocr/trec-robust-2004/fold3",
|
121 |
-
"disks45/nocr/trec-robust-2004/fold4",
|
122 |
-
"disks45/nocr/trec-robust-2004/fold5",
|
123 |
-
"disks45/nocr/trec7",
|
124 |
-
"disks45/nocr/trec8",
|
125 |
-
"dpr-w100/natural-questions/dev",
|
126 |
-
"dpr-w100/natural-questions/train",
|
127 |
-
"dpr-w100/trivia-qa/dev",
|
128 |
-
"dpr-w100/trivia-qa/train",
|
129 |
-
"gov/trec-web-2002",
|
130 |
-
"gov/trec-web-2002/named-page",
|
131 |
-
"gov/trec-web-2003",
|
132 |
-
"gov/trec-web-2003/named-page",
|
133 |
-
"gov/trec-web-2004",
|
134 |
-
"gov2/trec-mq-2007",
|
135 |
-
"gov2/trec-mq-2008",
|
136 |
-
"gov2/trec-tb-2004",
|
137 |
-
"gov2/trec-tb-2005",
|
138 |
-
"gov2/trec-tb-2005/efficiency",
|
139 |
-
"gov2/trec-tb-2005/named-page",
|
140 |
-
"gov2/trec-tb-2006",
|
141 |
-
"gov2/trec-tb-2006/efficiency",
|
142 |
-
"gov2/trec-tb-2006/efficiency/stream3",
|
143 |
-
"gov2/trec-tb-2006/named-page",
|
144 |
-
"hc4/fa/dev",
|
145 |
-
"hc4/fa/test",
|
146 |
-
"hc4/fa/train",
|
147 |
-
"hc4/ru/dev",
|
148 |
-
"hc4/ru/test",
|
149 |
-
"hc4/ru/train",
|
150 |
-
"hc4/zh/dev",
|
151 |
-
"hc4/zh/test",
|
152 |
-
"hc4/zh/train",
|
153 |
-
"highwire/trec-genomics-2006",
|
154 |
-
"highwire/trec-genomics-2007",
|
155 |
-
"istella22/test",
|
156 |
-
"istella22/test/fold1",
|
157 |
-
"istella22/test/fold2",
|
158 |
-
"istella22/test/fold3",
|
159 |
-
"istella22/test/fold4",
|
160 |
-
"istella22/test/fold5",
|
161 |
-
"kilt/codec",
|
162 |
-
"kilt/codec/economics",
|
163 |
-
"kilt/codec/history",
|
164 |
-
"kilt/codec/politics",
|
165 |
-
"lotte/lifestyle/dev/forum",
|
166 |
-
"lotte/lifestyle/dev/search",
|
167 |
-
"lotte/lifestyle/test/forum",
|
168 |
-
"lotte/lifestyle/test/search",
|
169 |
-
"lotte/pooled/dev/forum",
|
170 |
-
"lotte/pooled/dev/search",
|
171 |
-
"lotte/pooled/test/forum",
|
172 |
-
"lotte/pooled/test/search",
|
173 |
-
"lotte/recreation/dev/forum",
|
174 |
-
"lotte/recreation/dev/search",
|
175 |
-
"lotte/recreation/test/forum",
|
176 |
-
"lotte/recreation/test/search",
|
177 |
-
"lotte/science/dev/forum",
|
178 |
-
"lotte/science/dev/search",
|
179 |
-
"lotte/science/test/forum",
|
180 |
-
"lotte/science/test/search",
|
181 |
-
"lotte/technology/dev/forum",
|
182 |
-
"lotte/technology/dev/search",
|
183 |
-
"lotte/technology/test/forum",
|
184 |
-
"lotte/technology/test/search",
|
185 |
-
"lotte/writing/dev/forum",
|
186 |
-
"lotte/writing/dev/search",
|
187 |
-
"lotte/writing/test/forum",
|
188 |
-
"lotte/writing/test/search",
|
189 |
-
"medline/2004/trec-genomics-2004",
|
190 |
-
"medline/2004/trec-genomics-2005",
|
191 |
-
"medline/2017/trec-pm-2017",
|
192 |
-
"medline/2017/trec-pm-2018",
|
193 |
-
"mmarco/de/dev",
|
194 |
-
"mmarco/de/dev/small",
|
195 |
-
"mmarco/de/train",
|
196 |
-
"mmarco/es/dev",
|
197 |
-
"mmarco/es/dev/small",
|
198 |
-
"mmarco/es/train",
|
199 |
-
"mmarco/fr/dev",
|
200 |
-
"mmarco/fr/dev/small",
|
201 |
-
"mmarco/fr/train",
|
202 |
-
"mmarco/id/dev",
|
203 |
-
"mmarco/id/dev/small",
|
204 |
-
"mmarco/id/train",
|
205 |
-
"mmarco/it/dev",
|
206 |
-
"mmarco/it/dev/small",
|
207 |
-
"mmarco/it/train",
|
208 |
-
"mmarco/pt/dev",
|
209 |
-
"mmarco/pt/dev/small",
|
210 |
-
"mmarco/pt/dev/small/v1.1",
|
211 |
-
"mmarco/pt/dev/v1.1",
|
212 |
-
"mmarco/pt/train",
|
213 |
-
"mmarco/pt/train/v1.1",
|
214 |
-
"mmarco/ru/dev",
|
215 |
-
"mmarco/ru/dev/small",
|
216 |
-
"mmarco/ru/train",
|
217 |
-
"mmarco/v2/ar/dev",
|
218 |
-
"mmarco/v2/ar/dev/small",
|
219 |
-
"mmarco/v2/ar/train",
|
220 |
-
"mmarco/v2/de/dev",
|
221 |
-
"mmarco/v2/de/dev/small",
|
222 |
-
"mmarco/v2/de/train",
|
223 |
-
"mmarco/v2/dt/dev",
|
224 |
-
"mmarco/v2/dt/dev/small",
|
225 |
-
"mmarco/v2/dt/train",
|
226 |
-
"mmarco/v2/es/dev",
|
227 |
-
"mmarco/v2/es/dev/small",
|
228 |
-
"mmarco/v2/es/train",
|
229 |
-
"mmarco/v2/fr/dev",
|
230 |
-
"mmarco/v2/fr/dev/small",
|
231 |
-
"mmarco/v2/fr/train",
|
232 |
-
"mmarco/v2/hi/dev",
|
233 |
-
"mmarco/v2/hi/dev/small",
|
234 |
-
"mmarco/v2/hi/train",
|
235 |
-
"mmarco/v2/id/dev",
|
236 |
-
"mmarco/v2/id/dev/small",
|
237 |
-
"mmarco/v2/id/train",
|
238 |
-
"mmarco/v2/it/dev",
|
239 |
-
"mmarco/v2/it/dev/small",
|
240 |
-
"mmarco/v2/it/train",
|
241 |
-
"mmarco/v2/ja/dev",
|
242 |
-
"mmarco/v2/ja/dev/small",
|
243 |
-
"mmarco/v2/ja/train",
|
244 |
-
"mmarco/v2/pt/dev",
|
245 |
-
"mmarco/v2/pt/dev/small",
|
246 |
-
"mmarco/v2/pt/train",
|
247 |
-
"mmarco/v2/ru/dev",
|
248 |
-
"mmarco/v2/ru/dev/small",
|
249 |
-
"mmarco/v2/ru/train",
|
250 |
-
"mmarco/v2/vi/dev",
|
251 |
-
"mmarco/v2/vi/dev/small",
|
252 |
-
"mmarco/v2/vi/train",
|
253 |
-
"mmarco/v2/zh/dev",
|
254 |
-
"mmarco/v2/zh/dev/small",
|
255 |
-
"mmarco/v2/zh/train",
|
256 |
-
"mmarco/zh/dev",
|
257 |
-
"mmarco/zh/dev/small",
|
258 |
-
"mmarco/zh/dev/small/v1.1",
|
259 |
-
"mmarco/zh/dev/v1.1",
|
260 |
-
"mmarco/zh/train",
|
261 |
-
"mr-tydi/ar",
|
262 |
-
"mr-tydi/ar/dev",
|
263 |
-
"mr-tydi/ar/test",
|
264 |
-
"mr-tydi/ar/train",
|
265 |
-
"mr-tydi/bn",
|
266 |
-
"mr-tydi/bn/dev",
|
267 |
-
"mr-tydi/bn/test",
|
268 |
-
"mr-tydi/bn/train",
|
269 |
-
"mr-tydi/en",
|
270 |
-
"mr-tydi/en/dev",
|
271 |
-
"mr-tydi/en/test",
|
272 |
-
"mr-tydi/en/train",
|
273 |
-
"mr-tydi/fi",
|
274 |
-
"mr-tydi/fi/dev",
|
275 |
-
"mr-tydi/fi/test",
|
276 |
-
"mr-tydi/fi/train",
|
277 |
-
"mr-tydi/id",
|
278 |
-
"mr-tydi/id/dev",
|
279 |
-
"mr-tydi/id/test",
|
280 |
-
"mr-tydi/id/train",
|
281 |
-
"mr-tydi/ja",
|
282 |
-
"mr-tydi/ja/dev",
|
283 |
-
"mr-tydi/ja/test",
|
284 |
-
"mr-tydi/ja/train",
|
285 |
-
"mr-tydi/ko",
|
286 |
-
"mr-tydi/ko/dev",
|
287 |
-
"mr-tydi/ko/test",
|
288 |
-
"mr-tydi/ko/train",
|
289 |
-
"mr-tydi/ru",
|
290 |
-
"mr-tydi/ru/dev",
|
291 |
-
"mr-tydi/ru/test",
|
292 |
-
"mr-tydi/ru/train",
|
293 |
-
"mr-tydi/sw",
|
294 |
-
"mr-tydi/sw/dev",
|
295 |
-
"mr-tydi/sw/test",
|
296 |
-
"mr-tydi/sw/train",
|
297 |
-
"mr-tydi/te",
|
298 |
-
"mr-tydi/te/dev",
|
299 |
-
"mr-tydi/te/test",
|
300 |
-
"mr-tydi/te/train",
|
301 |
-
"mr-tydi/th",
|
302 |
-
"mr-tydi/th/dev",
|
303 |
-
"mr-tydi/th/test",
|
304 |
-
"mr-tydi/th/train",
|
305 |
-
"msmarco-document-v2/dev1",
|
306 |
-
"msmarco-document-v2/dev2",
|
307 |
-
"msmarco-document-v2/train",
|
308 |
-
"msmarco-document-v2/trec-dl-2019",
|
309 |
-
"msmarco-document-v2/trec-dl-2019/judged",
|
310 |
-
"msmarco-document-v2/trec-dl-2020",
|
311 |
-
"msmarco-document-v2/trec-dl-2020/judged",
|
312 |
-
"msmarco-document-v2/trec-dl-2021",
|
313 |
-
"msmarco-document-v2/trec-dl-2021/judged",
|
314 |
-
"msmarco-document-v2/trec-dl-2022",
|
315 |
-
"msmarco-document-v2/trec-dl-2022/judged",
|
316 |
-
"msmarco-document/dev",
|
317 |
-
"msmarco-document/orcas",
|
318 |
-
"msmarco-document/train",
|
319 |
-
"msmarco-document/trec-dl-2019",
|
320 |
-
"msmarco-document/trec-dl-2019/judged",
|
321 |
-
"msmarco-document/trec-dl-2020",
|
322 |
-
"msmarco-document/trec-dl-2020/judged",
|
323 |
-
"msmarco-document/trec-dl-hard",
|
324 |
-
"msmarco-document/trec-dl-hard/fold1",
|
325 |
-
"msmarco-document/trec-dl-hard/fold2",
|
326 |
-
"msmarco-document/trec-dl-hard/fold3",
|
327 |
-
"msmarco-document/trec-dl-hard/fold4",
|
328 |
-
"msmarco-document/trec-dl-hard/fold5",
|
329 |
-
"msmarco-passage-v2/dev1",
|
330 |
-
"msmarco-passage-v2/dev2",
|
331 |
-
"msmarco-passage-v2/train",
|
332 |
-
"msmarco-passage-v2/trec-dl-2021",
|
333 |
-
"msmarco-passage-v2/trec-dl-2021/judged",
|
334 |
-
"msmarco-passage-v2/trec-dl-2022",
|
335 |
-
"msmarco-passage-v2/trec-dl-2022/judged",
|
336 |
-
"msmarco-passage/dev",
|
337 |
-
"msmarco-passage/dev/2",
|
338 |
-
"msmarco-passage/dev/judged",
|
339 |
-
"msmarco-passage/dev/small",
|
340 |
-
"msmarco-passage/train",
|
341 |
-
"msmarco-passage/train/judged",
|
342 |
-
"msmarco-passage/train/medical",
|
343 |
-
"msmarco-passage/train/split200-train",
|
344 |
-
"msmarco-passage/train/split200-valid",
|
345 |
-
"msmarco-passage/train/triples-small",
|
346 |
-
"msmarco-passage/train/triples-v2",
|
347 |
-
"msmarco-passage/trec-dl-2019",
|
348 |
-
"msmarco-passage/trec-dl-2019/judged",
|
349 |
-
"msmarco-passage/trec-dl-2020",
|
350 |
-
"msmarco-passage/trec-dl-2020/judged",
|
351 |
-
"msmarco-passage/trec-dl-hard",
|
352 |
-
"msmarco-passage/trec-dl-hard/fold1",
|
353 |
-
"msmarco-passage/trec-dl-hard/fold2",
|
354 |
-
"msmarco-passage/trec-dl-hard/fold3",
|
355 |
-
"msmarco-passage/trec-dl-hard/fold4",
|
356 |
-
"msmarco-passage/trec-dl-hard/fold5",
|
357 |
-
"msmarco-qna/dev",
|
358 |
-
"msmarco-qna/train",
|
359 |
-
"natural-questions/dev",
|
360 |
-
"natural-questions/train",
|
361 |
-
"neuclir/1/fa/hc4-filtered",
|
362 |
-
"neuclir/1/ru/hc4-filtered",
|
363 |
-
"neuclir/1/zh/hc4-filtered",
|
364 |
-
"neumarco/fa/dev",
|
365 |
-
"neumarco/fa/dev/judged",
|
366 |
-
"neumarco/fa/dev/small",
|
367 |
-
"neumarco/fa/train",
|
368 |
-
"neumarco/fa/train/judged",
|
369 |
-
"neumarco/ru/dev",
|
370 |
-
"neumarco/ru/dev/judged",
|
371 |
-
"neumarco/ru/dev/small",
|
372 |
-
"neumarco/ru/train",
|
373 |
-
"neumarco/ru/train/judged",
|
374 |
-
"neumarco/zh/dev",
|
375 |
-
"neumarco/zh/dev/judged",
|
376 |
-
"neumarco/zh/dev/small",
|
377 |
-
"neumarco/zh/train",
|
378 |
-
"neumarco/zh/train/judged",
|
379 |
-
"nfcorpus/dev",
|
380 |
-
"nfcorpus/dev/nontopic",
|
381 |
-
"nfcorpus/dev/video",
|
382 |
-
"nfcorpus/test",
|
383 |
-
"nfcorpus/test/nontopic",
|
384 |
-
"nfcorpus/test/video",
|
385 |
-
"nfcorpus/train",
|
386 |
-
"nfcorpus/train/nontopic",
|
387 |
-
"nfcorpus/train/video",
|
388 |
-
"nyt/trec-core-2017",
|
389 |
-
"nyt/wksup",
|
390 |
-
"nyt/wksup/train",
|
391 |
-
"nyt/wksup/valid",
|
392 |
-
"pmc/v1/trec-cds-2014",
|
393 |
-
"pmc/v1/trec-cds-2015",
|
394 |
-
"pmc/v2/trec-cds-2016",
|
395 |
-
"sara",
|
396 |
-
"touche-image/2022-06-13/touche-2022-task-3",
|
397 |
-
"trec-arabic/ar2001",
|
398 |
-
"trec-arabic/ar2002",
|
399 |
-
"trec-cast/v0/train",
|
400 |
-
"trec-cast/v0/train/judged",
|
401 |
-
"trec-cast/v1/2019",
|
402 |
-
"trec-cast/v1/2019/judged",
|
403 |
-
"trec-cast/v1/2020",
|
404 |
-
"trec-cast/v1/2020/judged",
|
405 |
-
"trec-fair-2021/eval",
|
406 |
-
"trec-fair-2021/train",
|
407 |
-
"trec-fair/2021/eval",
|
408 |
-
"trec-fair/2021/train",
|
409 |
-
"trec-fair/2022/train",
|
410 |
-
"trec-mandarin/trec5",
|
411 |
-
"trec-mandarin/trec6",
|
412 |
-
"trec-robust04",
|
413 |
-
"trec-robust04/fold1",
|
414 |
-
"trec-robust04/fold2",
|
415 |
-
"trec-robust04/fold3",
|
416 |
-
"trec-robust04/fold4",
|
417 |
-
"trec-robust04/fold5",
|
418 |
-
"trec-spanish/trec3",
|
419 |
-
"trec-spanish/trec4",
|
420 |
-
"trec-tot/2023/dev",
|
421 |
-
"trec-tot/2023/train",
|
422 |
-
"tripclick/train",
|
423 |
-
"tripclick/train/head",
|
424 |
-
"tripclick/train/head/dctr",
|
425 |
-
"tripclick/train/hofstaetter-triples",
|
426 |
-
"tripclick/train/tail",
|
427 |
-
"tripclick/train/torso",
|
428 |
-
"tripclick/val",
|
429 |
-
"tripclick/val/head",
|
430 |
-
"tripclick/val/head/dctr",
|
431 |
-
"tripclick/val/tail",
|
432 |
-
"tripclick/val/torso",
|
433 |
-
"tweets2013-ia/trec-mb-2013",
|
434 |
-
"tweets2013-ia/trec-mb-2014",
|
435 |
-
"vaswani",
|
436 |
-
"wapo/v2/trec-core-2018",
|
437 |
-
"wapo/v2/trec-news-2018",
|
438 |
-
"wapo/v2/trec-news-2019",
|
439 |
-
"wikiclir/ar",
|
440 |
-
"wikiclir/ca",
|
441 |
-
"wikiclir/cs",
|
442 |
-
"wikiclir/de",
|
443 |
-
"wikiclir/en-simple",
|
444 |
-
"wikiclir/es",
|
445 |
-
"wikiclir/fi",
|
446 |
-
"wikiclir/fr",
|
447 |
-
"wikiclir/it",
|
448 |
-
"wikiclir/ja",
|
449 |
-
"wikiclir/ko",
|
450 |
-
"wikiclir/nl",
|
451 |
-
"wikiclir/nn",
|
452 |
-
"wikiclir/no",
|
453 |
-
"wikiclir/pl",
|
454 |
-
"wikiclir/pt",
|
455 |
-
"wikiclir/ro",
|
456 |
-
"wikiclir/ru",
|
457 |
-
"wikiclir/sv",
|
458 |
-
"wikiclir/sw",
|
459 |
-
"wikiclir/tl",
|
460 |
-
"wikiclir/tr",
|
461 |
-
"wikiclir/uk",
|
462 |
-
"wikiclir/vi",
|
463 |
-
"wikiclir/zh",
|
464 |
-
"wikir/en1k/test",
|
465 |
-
"wikir/en1k/training",
|
466 |
-
"wikir/en1k/validation",
|
467 |
-
"wikir/en59k/test",
|
468 |
-
"wikir/en59k/training",
|
469 |
-
"wikir/en59k/validation",
|
470 |
-
"wikir/en78k/test",
|
471 |
-
"wikir/en78k/training",
|
472 |
-
"wikir/en78k/validation",
|
473 |
-
"wikir/ens78k/test",
|
474 |
-
"wikir/ens78k/training",
|
475 |
-
"wikir/ens78k/validation",
|
476 |
-
"wikir/es13k/test",
|
477 |
-
"wikir/es13k/training",
|
478 |
-
"wikir/es13k/validation",
|
479 |
-
"wikir/fr14k/test",
|
480 |
-
"wikir/fr14k/training",
|
481 |
-
"wikir/fr14k/validation",
|
482 |
-
"wikir/it16k/test",
|
483 |
-
"wikir/it16k/training",
|
484 |
-
"wikir/it16k/validation"
|
485 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/corpus.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:87ef61791e9aa9a9833e59e81756d41beaca8e4cd3efad2bb8940e5876f69008
|
3 |
-
size 384365716
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/qrels/test.tsv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d172966a5e2dcc39491d446ca75ed730f7309d09701c131add14eb62b45c2114
|
3 |
-
size 79309
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/qrels/test.tsv.tmp
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ef54b582e47e48fdd094a3da00644bcf4af684b709be3f4f72f4de23c783ea50
|
3 |
-
size 79283
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/qrels/test.tsv.tmp.2
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:efda84b6d2b19a4bbd33ecd89616c88b63f4d585f7cb5ea10cc12372592306a3
|
3 |
-
size 81283
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/qrels/test.tsv.tmp.2.filtered
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ea798baa1ab23010a7769e60ba06e388d2b421cc2a9987b13900743df122a7c2
|
3 |
-
size 24193
|
|
|
|
|
|
|
|
local_datasets/codesearch_py/queries.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:41e3f41fad388f4f612630bdb8ccb23b319b24a0b859db226a381b6f68b1771c
|
3 |
-
size 199567
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/corpus.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:31282e5019461a6cd9d88a9e47fe6743d6962b3aeb81f5f5f78fa72eb52ff46b
|
3 |
-
size 1399723
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/qrels/test.tsv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0b56de4bfec42225780cda2fc28fd7e0ee433f313208ab210de5bcf6281757ee
|
3 |
-
size 49675
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:49982dbf8d1d182a75935718cb183b91d29e3ad4db1892723371c7d762955cbc
|
3 |
-
size 49649
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp.2
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5f0c2a26846e0456ddd24cd6d315ae516af28504e6b2961d00e0da0ff821f648
|
3 |
-
size 51649
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/qrels/test.tsv.tmp.2.filtered
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e681ddae1619d30ce425fdb01ca4ceb10f493b079369ac0e555b1338cd3914e1
|
3 |
-
size 15158
|
|
|
|
|
|
|
|
local_datasets/gooaq_technical/queries.jsonl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:25df519a5e39f0c91f6f7c5bdb74601cbfffbadd3cd1a998a8a5a48740b885be
|
3 |
-
size 110860
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,5 @@
|
|
1 |
-
beir==1.0.1
|
2 |
pandas==2.0.3
|
3 |
-
pytrec_eval==0.5
|
4 |
streamlit==1.24.1
|
5 |
-
ir_datasets==0.5.5
|
6 |
-
pyserini==0.21.0
|
7 |
-
torch==2.0.1
|
8 |
plotly==5.15.0
|
9 |
-
captum==0.6.0
|
10 |
protobuf==3.20.0
|
11 |
beautifulsoup4==4.12.2
|
|
|
|
|
1 |
pandas==2.0.3
|
|
|
2 |
streamlit==1.24.1
|
|
|
|
|
|
|
3 |
plotly==5.15.0
|
|
|
4 |
protobuf==3.20.0
|
5 |
beautifulsoup4==4.12.2
|
scripts/collect_ir_dataset_names.py
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
from bs4 import BeautifulSoup
|
3 |
-
import re
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
import pathlib
|
7 |
-
import shutil
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
def get_ir_dataset_names():
|
12 |
-
url = "https://raw.githubusercontent.com/allenai/ir_datasets/master/ir_datasets/etc/metadata.json"
|
13 |
-
# read in the json
|
14 |
-
with requests.get(url) as r:
|
15 |
-
data = json.loads(r.text)
|
16 |
-
names = []
|
17 |
-
for dataset in data:
|
18 |
-
if "docs" in data[dataset] and "queries" in data[dataset] and "qrels" in data[dataset]:
|
19 |
-
names.append(dataset)
|
20 |
-
return names
|
21 |
-
|
22 |
-
|
23 |
-
if __name__ == "__main__":
|
24 |
-
names = get_ir_dataset_names()
|
25 |
-
with open("ir_dataset_names.json", "w") as fout:
|
26 |
-
json.dump(names, fout, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test.tst
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
"base",
|
2 |
-
"antique",
|
3 |
-
"aol_ia",
|
4 |
-
"aquaint",
|
5 |
-
"argsme",
|
6 |
-
"beir",
|
7 |
-
"c4
|
8 |
-
"car",
|
9 |
-
"clinicaltrials",
|
10 |
-
"clirmatrix",
|
11 |
-
"clueweb09",
|
12 |
-
"clueweb12",
|
13 |
-
"codec",
|
14 |
-
"cord19",
|
15 |
-
"cranfield",
|
16 |
-
"disks45",
|
17 |
-
"dpr_w100",
|
18 |
-
"codesearchnet",
|
19 |
-
"gov",
|
20 |
-
"gov2",
|
21 |
-
"highwire",
|
22 |
-
"istella22",
|
23 |
-
"kilt",
|
24 |
-
"lotte",
|
25 |
-
"medline",
|
26 |
-
"mmarco",
|
27 |
-
"mr_tydi",
|
28 |
-
"msmarco_document",
|
29 |
-
"msmarco_document_v2",
|
30 |
-
"msmarco_passage",
|
31 |
-
"msmarco_passage_v2",
|
32 |
-
"msmarco_qna",
|
33 |
-
"neumarco",
|
34 |
-
"nfcorpus",
|
35 |
-
"natural_questions",
|
36 |
-
"nyt",
|
37 |
-
"pmc",
|
38 |
-
"touche_image",
|
39 |
-
"touche",
|
40 |
-
"trec_arabic",
|
41 |
-
"trec_mandarin",
|
42 |
-
"trec_spanish",
|
43 |
-
"trec_robust04",
|
44 |
-
"trec_tot",
|
45 |
-
"tripclick",
|
46 |
-
"tweets2013_ia",
|
47 |
-
"vaswani",
|
48 |
-
"wapo",
|
49 |
-
"wikiclir",
|
50 |
-
"wikir",
|
51 |
-
"trec_fair",
|
52 |
-
"trec_cast",
|
53 |
-
"hc4",
|
54 |
-
"neuclir",
|
55 |
-
"sara",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|