Spaces:
Running
on
A10G
Running
on
A10G
import argparse | |
import json | |
import os | |
import re | |
import random | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--base-dir', type=str) | |
parser.add_argument('--result-file', type=str) | |
parser.add_argument('--output-file', type=str) | |
parser.add_argument('--output-result', type=str) | |
parser.add_argument('--split', type=str, default='test') | |
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"]) | |
return parser.parse_args() | |
def convert_caps(results): | |
fakecaps = [] | |
for result in results: | |
image_id = result['question_id'] | |
caption = result['text'] | |
fakecaps.append({"image_id": int(image_id), "caption": caption}) | |
return fakecaps | |
def get_pred_idx(prediction, choices, options): | |
""" | |
Get the index (e.g. 2) from the prediction (e.g. 'C') | |
""" | |
if prediction in options[:len(choices)]: | |
return options.index(prediction) | |
else: | |
return -1 | |
return random.choice(range(len(choices))) | |
if __name__ == "__main__": | |
args = get_args() | |
base_dir = args.base_dir | |
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split] | |
problems = json.load(open(os.path.join(base_dir, "problems.json"))) | |
predictions = [json.loads(line) for line in open(args.result_file)] | |
predictions = {pred['question_id']: pred for pred in predictions} | |
split_problems = {idx: problems[idx] for idx in split_indices} | |
results = {'correct': [], 'incorrect': []} | |
sqa_results = {} | |
sqa_results['acc'] = None | |
sqa_results['correct'] = None | |
sqa_results['count'] = None | |
sqa_results['results'] = {} | |
sqa_results['outputs'] = {} | |
for prob_id, prob in split_problems.items(): | |
if prob_id not in predictions: | |
pred = {'text': 'FAILED', 'prompt': 'Unknown'} | |
pred_text = 'FAILED' | |
else: | |
pred = predictions[prob_id] | |
pred_text = pred['text'] | |
if pred_text in args.options: | |
answer = pred_text | |
elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ": | |
answer = pred_text[0] | |
else: | |
pattern = re.compile(r'The answer is ([A-Z]).') | |
res = pattern.findall(pred_text) | |
if len(res) == 1: | |
answer = res[0] # 'A', 'B', ... | |
else: | |
answer = "FAILED" | |
pred_idx = get_pred_idx(answer, prob['choices'], args.options) | |
analysis = { | |
'question_id': prob_id, | |
'parsed_ans': answer, | |
'ground_truth': args.options[prob['answer']], | |
'question': pred['prompt'], | |
'pred': pred_text, | |
'is_multimodal': '<image>' in pred['prompt'], | |
} | |
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options) | |
sqa_results['outputs'][prob_id] = pred_text | |
if pred_idx == prob['answer']: | |
results['correct'].append(analysis) | |
else: | |
results['incorrect'].append(analysis) | |
correct = len(results['correct']) | |
total = len(results['correct']) + len(results['incorrect']) | |
###### IMG ###### | |
multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']]) | |
multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']]) | |
multimodal_total = multimodal_correct + multimodal_incorrect | |
###### IMG ###### | |
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%') | |
sqa_results['acc'] = correct / total * 100 | |
sqa_results['correct'] = correct | |
sqa_results['count'] = total | |
with open(args.output_file, 'w') as f: | |
json.dump(results, f, indent=2) | |
with open(args.output_result, 'w') as f: | |
json.dump(sqa_results, f, indent=2) | |