Spaces:
Running
Running
BenchmarkBot
commited on
Commit
·
07da7d0
1
Parent(s):
e747f4e
remove clickable scores
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ COLUMNS_MAPPING = {
|
|
21 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
22 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
23 |
}
|
24 |
-
COLUMNS_DATATYPES = ["markdown", "str", "str", "
|
25 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
26 |
|
27 |
|
@@ -39,8 +39,8 @@ def get_benchmark_df(benchmark):
|
|
39 |
scores_df = pd.read_csv(
|
40 |
f"./llm-perf-dataset/reports/average_scores.csv")
|
41 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
42 |
-
bench_df["average"] = bench_df["average"].apply(
|
43 |
-
|
44 |
|
45 |
# preprocess
|
46 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
@@ -72,16 +72,16 @@ def submit_query(text, backends, datatypes, threshold, raw_dfs):
|
|
72 |
filtered_dfs = []
|
73 |
for raw_df in raw_dfs:
|
74 |
# extract the average score (float) from the clickable score (clickable markdown)
|
75 |
-
raw_df["Average H4 Score ⬆️"] = raw_df["Average H4 Score ⬆️"].apply(
|
76 |
-
|
77 |
filtered_df = raw_df[
|
78 |
raw_df["Model 🤗"].str.contains(text) &
|
79 |
raw_df["Backend 🏭"].isin(backends) &
|
80 |
raw_df["Datatype 📥"].isin(datatypes) &
|
81 |
(raw_df["Average H4 Score ⬆️"] >= threshold)
|
82 |
]
|
83 |
-
filtered_df["Average H4 Score ⬆️"] = filtered_df["Average H4 Score ⬆️"].apply(
|
84 |
-
|
85 |
|
86 |
filtered_dfs.append(filtered_df)
|
87 |
|
|
|
21 |
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
|
22 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
23 |
}
|
24 |
+
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "number"]
|
25 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
26 |
|
27 |
|
|
|
39 |
scores_df = pd.read_csv(
|
40 |
f"./llm-perf-dataset/reports/average_scores.csv")
|
41 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
42 |
+
# bench_df["average"] = bench_df["average"].apply(
|
43 |
+
# make_clickable_score)
|
44 |
|
45 |
# preprocess
|
46 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
|
|
72 |
filtered_dfs = []
|
73 |
for raw_df in raw_dfs:
|
74 |
# extract the average score (float) from the clickable score (clickable markdown)
|
75 |
+
# raw_df["Average H4 Score ⬆️"] = raw_df["Average H4 Score ⬆️"].apply(
|
76 |
+
# extract_score_from_clickable)
|
77 |
filtered_df = raw_df[
|
78 |
raw_df["Model 🤗"].str.contains(text) &
|
79 |
raw_df["Backend 🏭"].isin(backends) &
|
80 |
raw_df["Datatype 📥"].isin(datatypes) &
|
81 |
(raw_df["Average H4 Score ⬆️"] >= threshold)
|
82 |
]
|
83 |
+
# filtered_df["Average H4 Score ⬆️"] = filtered_df["Average H4 Score ⬆️"].apply(
|
84 |
+
# make_clickable_score)
|
85 |
|
86 |
filtered_dfs.append(filtered_df)
|
87 |
|