Spaces:
Running
Running
Commit
Β·
003f467
1
Parent(s):
591a3e4
intel results accesible in the leaderboard
Browse files- app.py +14 -17
- src/llm_perf.py +7 -5
- src/panel.py +15 -7
app.py
CHANGED
@@ -4,6 +4,7 @@ from src.assets import custom_css
|
|
4 |
|
5 |
# from src.attention import create_attn_plots
|
6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
|
|
7 |
from src.leaderboard import create_leaderboard_table
|
8 |
from src.llm_perf import get_llm_perf_df
|
9 |
from src.map import create_lat_score_mem_plot
|
@@ -13,15 +14,7 @@ from src.panel import (
|
|
13 |
create_select_callback,
|
14 |
)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
MACHINE_TO_HARDWARE = {
|
19 |
-
"1xA10": "A10-24GB-150W π₯οΈ",
|
20 |
-
"1xA100": "A100-80GB-275W π₯οΈ",
|
21 |
-
"1xT4": "T4-16GB-70W π₯οΈ",
|
22 |
-
"intel": "4th-Gen-Intel-Xeon-385W π₯οΈ",
|
23 |
-
# "1xH100": "H100-80GB-700W π₯οΈ",
|
24 |
-
}
|
25 |
|
26 |
|
27 |
demo = gr.Blocks(css=custom_css)
|
@@ -30,12 +23,13 @@ with demo:
|
|
30 |
gr.HTML(TITLE, elem_classes="title")
|
31 |
####################### HARDWARE TABS #######################
|
32 |
with gr.Tabs(elem_classes="tabs"):
|
33 |
-
for id,
|
34 |
-
with gr.TabItem(
|
35 |
-
####################### CONTROL PANEL #######################
|
36 |
(
|
37 |
filter_button,
|
38 |
machine_textbox,
|
|
|
39 |
score_slider,
|
40 |
memory_slider,
|
41 |
backend_checkboxes,
|
@@ -43,17 +37,18 @@ with demo:
|
|
43 |
optimization_checkboxes,
|
44 |
quantization_checkboxes,
|
45 |
kernels_checkboxes,
|
46 |
-
) = create_control_panel(machine=machine)
|
47 |
####################### HARDWARE SUBTABS #######################
|
48 |
with gr.Tabs(elem_classes="subtabs"):
|
49 |
-
open_llm_perf_df = get_llm_perf_df(machine=machine)
|
50 |
####################### LEADERBOARD TAB #######################
|
51 |
with gr.TabItem("Leaderboard π
", id=0):
|
52 |
search_bar, columns_checkboxes, leaderboard_table = (
|
53 |
create_leaderboard_table(open_llm_perf_df)
|
54 |
)
|
55 |
-
|
56 |
-
|
|
|
57 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
58 |
# with gr.TabItem("Attention π", id=2):
|
59 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
@@ -70,6 +65,7 @@ with demo:
|
|
70 |
filter_button,
|
71 |
# inputs
|
72 |
machine_textbox,
|
|
|
73 |
score_slider,
|
74 |
memory_slider,
|
75 |
backend_checkboxes,
|
@@ -92,6 +88,7 @@ with demo:
|
|
92 |
create_select_callback(
|
93 |
# inputs
|
94 |
machine_textbox,
|
|
|
95 |
# interactive
|
96 |
columns_checkboxes,
|
97 |
search_bar,
|
@@ -100,7 +97,7 @@ with demo:
|
|
100 |
)
|
101 |
|
102 |
####################### ABOUT TAB #######################
|
103 |
-
with gr.TabItem("About π", id=
|
104 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
105 |
####################### CITATION
|
106 |
with gr.Row():
|
|
|
4 |
|
5 |
# from src.attention import create_attn_plots
|
6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
7 |
+
from src.hardware import load_hardware_configs
|
8 |
from src.leaderboard import create_leaderboard_table
|
9 |
from src.llm_perf import get_llm_perf_df
|
10 |
from src.map import create_lat_score_mem_plot
|
|
|
14 |
create_select_callback,
|
15 |
)
|
16 |
|
17 |
+
configs = load_hardware_configs("hardware.yml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
demo = gr.Blocks(css=custom_css)
|
|
|
23 |
gr.HTML(TITLE, elem_classes="title")
|
24 |
####################### HARDWARE TABS #######################
|
25 |
with gr.Tabs(elem_classes="tabs"):
|
26 |
+
for id, config in enumerate(configs):
|
27 |
+
with gr.TabItem(config.description, id=id):
|
28 |
+
# ####################### CONTROL PANEL #######################
|
29 |
(
|
30 |
filter_button,
|
31 |
machine_textbox,
|
32 |
+
subsets_values,
|
33 |
score_slider,
|
34 |
memory_slider,
|
35 |
backend_checkboxes,
|
|
|
37 |
optimization_checkboxes,
|
38 |
quantization_checkboxes,
|
39 |
kernels_checkboxes,
|
40 |
+
) = create_control_panel(machine=config.machine, subsets=config.subsets)
|
41 |
####################### HARDWARE SUBTABS #######################
|
42 |
with gr.Tabs(elem_classes="subtabs"):
|
43 |
+
open_llm_perf_df = get_llm_perf_df(machine=config.machine, subsets=config.subsets)
|
44 |
####################### LEADERBOARD TAB #######################
|
45 |
with gr.TabItem("Leaderboard π
", id=0):
|
46 |
search_bar, columns_checkboxes, leaderboard_table = (
|
47 |
create_leaderboard_table(open_llm_perf_df)
|
48 |
)
|
49 |
+
if config.hardware_type != "intel": # TODO intel CPU does not measure the memory requirements correctly, so disable the graph feature until we fix the underlying issue
|
50 |
+
with gr.TabItem("Find Your Best Model π§", id=1):
|
51 |
+
lat_score_mem_plot = create_lat_score_mem_plot(open_llm_perf_df)
|
52 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
53 |
# with gr.TabItem("Attention π", id=2):
|
54 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
|
|
65 |
filter_button,
|
66 |
# inputs
|
67 |
machine_textbox,
|
68 |
+
subsets_values,
|
69 |
score_slider,
|
70 |
memory_slider,
|
71 |
backend_checkboxes,
|
|
|
88 |
create_select_callback(
|
89 |
# inputs
|
90 |
machine_textbox,
|
91 |
+
subsets_values,
|
92 |
# interactive
|
93 |
columns_checkboxes,
|
94 |
search_bar,
|
|
|
97 |
)
|
98 |
|
99 |
####################### ABOUT TAB #######################
|
100 |
+
with gr.TabItem("About π", id=len(configs)):
|
101 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
102 |
####################### CITATION
|
103 |
with gr.Row():
|
src/llm_perf.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import pandas as pd
|
4 |
|
|
|
|
|
5 |
from .utils import process_kernels, process_quantizations
|
6 |
|
7 |
DATASET_DIRECTORY = "dataset"
|
@@ -28,13 +31,12 @@ COLUMNS_MAPPING = {
|
|
28 |
"#Params (B)": "Params (B)",
|
29 |
}
|
30 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
31 |
-
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
|
32 |
SORTING_ASCENDING = [False, True, False]
|
33 |
|
34 |
|
35 |
-
def get_raw_llm_perf_df(machine: str
|
36 |
dfs = []
|
37 |
-
for subset in
|
38 |
try:
|
39 |
dfs.append(
|
40 |
pd.read_csv(
|
@@ -110,14 +112,14 @@ def processed_llm_perf_df(llm_perf_df):
|
|
110 |
return llm_perf_df
|
111 |
|
112 |
|
113 |
-
def get_llm_perf_df(machine: str
|
114 |
if not os.path.exists(DATASET_DIRECTORY):
|
115 |
os.makedirs(DATASET_DIRECTORY)
|
116 |
|
117 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
118 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
119 |
else:
|
120 |
-
llm_perf_df = get_raw_llm_perf_df(machine)
|
121 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
122 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
123 |
|
|
|
1 |
import os
|
2 |
+
from typing import List
|
3 |
|
4 |
import pandas as pd
|
5 |
|
6 |
+
from src.hardware import HardwareConfig
|
7 |
+
|
8 |
from .utils import process_kernels, process_quantizations
|
9 |
|
10 |
DATASET_DIRECTORY = "dataset"
|
|
|
31 |
"#Params (B)": "Params (B)",
|
32 |
}
|
33 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
|
|
34 |
SORTING_ASCENDING = [False, True, False]
|
35 |
|
36 |
|
37 |
+
def get_raw_llm_perf_df(machine: str, subsets: List[str]):
|
38 |
dfs = []
|
39 |
+
for subset in subsets:
|
40 |
try:
|
41 |
dfs.append(
|
42 |
pd.read_csv(
|
|
|
112 |
return llm_perf_df
|
113 |
|
114 |
|
115 |
+
def get_llm_perf_df(machine: str, subsets: List[str]):
|
116 |
if not os.path.exists(DATASET_DIRECTORY):
|
117 |
os.makedirs(DATASET_DIRECTORY)
|
118 |
|
119 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
120 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
121 |
else:
|
122 |
+
llm_perf_df = get_raw_llm_perf_df(machine, subsets)
|
123 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
124 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
125 |
|
src/panel.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from src.leaderboard import get_leaderboard_df
|
@@ -8,9 +10,10 @@ from src.llm_perf import get_llm_perf_df
|
|
8 |
from src.map import get_lat_score_mem_fig
|
9 |
|
10 |
|
11 |
-
def create_control_panel(machine: str):
|
12 |
# controls
|
13 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
|
|
14 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
15 |
with gr.Row():
|
16 |
with gr.Column(scale=2, variant="panel"):
|
@@ -107,6 +110,7 @@ def create_control_panel(machine: str):
|
|
107 |
return (
|
108 |
filter_button,
|
109 |
machine_textbox,
|
|
|
110 |
score_slider,
|
111 |
memory_slider,
|
112 |
backend_checkboxes,
|
@@ -119,6 +123,7 @@ def create_control_panel(machine: str):
|
|
119 |
|
120 |
def filter_rows_fn(
|
121 |
machine,
|
|
|
122 |
# inputs
|
123 |
score,
|
124 |
memory,
|
@@ -131,7 +136,7 @@ def filter_rows_fn(
|
|
131 |
columns,
|
132 |
search,
|
133 |
):
|
134 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
135 |
# print(attentions)
|
136 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
137 |
filtered_llm_perf_df = llm_perf_df[
|
@@ -145,7 +150,7 @@ def filter_rows_fn(
|
|
145 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
146 |
]
|
147 |
selected_filtered_llm_perf_df = select_columns_fn(
|
148 |
-
machine, columns, search, filtered_llm_perf_df
|
149 |
)
|
150 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
151 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
@@ -172,6 +177,7 @@ def create_control_callback(
|
|
172 |
filter_button,
|
173 |
# fixed
|
174 |
machine_textbox,
|
|
|
175 |
# inputs
|
176 |
score_slider,
|
177 |
memory_slider,
|
@@ -198,6 +204,7 @@ def create_control_callback(
|
|
198 |
inputs=[
|
199 |
# fixed
|
200 |
machine_textbox,
|
|
|
201 |
# inputs
|
202 |
score_slider,
|
203 |
memory_slider,
|
@@ -223,9 +230,9 @@ def create_control_callback(
|
|
223 |
)
|
224 |
|
225 |
|
226 |
-
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
227 |
if llm_perf_df is None:
|
228 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
229 |
|
230 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
231 |
selected_leaderboard_df = selected_leaderboard_df[
|
@@ -239,6 +246,7 @@ def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
|
239 |
def create_select_callback(
|
240 |
# fixed
|
241 |
machine_textbox,
|
|
|
242 |
# interactive
|
243 |
columns_checkboxes,
|
244 |
search_bar,
|
@@ -247,11 +255,11 @@ def create_select_callback(
|
|
247 |
):
|
248 |
columns_checkboxes.change(
|
249 |
fn=select_columns_fn,
|
250 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
251 |
outputs=[leaderboard_table],
|
252 |
)
|
253 |
search_bar.change(
|
254 |
fn=select_columns_fn,
|
255 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
256 |
outputs=[leaderboard_table],
|
257 |
)
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
import gradio as gr
|
4 |
|
5 |
from src.leaderboard import get_leaderboard_df
|
|
|
10 |
from src.map import get_lat_score_mem_fig
|
11 |
|
12 |
|
13 |
+
def create_control_panel(machine: str, subsets: List[str]):
|
14 |
# controls
|
15 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
16 |
+
subsets_values = gr.State(value=subsets)
|
17 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
18 |
with gr.Row():
|
19 |
with gr.Column(scale=2, variant="panel"):
|
|
|
110 |
return (
|
111 |
filter_button,
|
112 |
machine_textbox,
|
113 |
+
subsets_values,
|
114 |
score_slider,
|
115 |
memory_slider,
|
116 |
backend_checkboxes,
|
|
|
123 |
|
124 |
def filter_rows_fn(
|
125 |
machine,
|
126 |
+
subsets,
|
127 |
# inputs
|
128 |
score,
|
129 |
memory,
|
|
|
136 |
columns,
|
137 |
search,
|
138 |
):
|
139 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
140 |
# print(attentions)
|
141 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
142 |
filtered_llm_perf_df = llm_perf_df[
|
|
|
150 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
151 |
]
|
152 |
selected_filtered_llm_perf_df = select_columns_fn(
|
153 |
+
machine, subsets, columns, search, filtered_llm_perf_df
|
154 |
)
|
155 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
156 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
|
|
177 |
filter_button,
|
178 |
# fixed
|
179 |
machine_textbox,
|
180 |
+
subsets_textbox,
|
181 |
# inputs
|
182 |
score_slider,
|
183 |
memory_slider,
|
|
|
204 |
inputs=[
|
205 |
# fixed
|
206 |
machine_textbox,
|
207 |
+
subsets_textbox,
|
208 |
# inputs
|
209 |
score_slider,
|
210 |
memory_slider,
|
|
|
230 |
)
|
231 |
|
232 |
|
233 |
+
def select_columns_fn(machine, subsets, columns, search, llm_perf_df=None):
|
234 |
if llm_perf_df is None:
|
235 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
236 |
|
237 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
238 |
selected_leaderboard_df = selected_leaderboard_df[
|
|
|
246 |
def create_select_callback(
|
247 |
# fixed
|
248 |
machine_textbox,
|
249 |
+
subsets_values,
|
250 |
# interactive
|
251 |
columns_checkboxes,
|
252 |
search_bar,
|
|
|
255 |
):
|
256 |
columns_checkboxes.change(
|
257 |
fn=select_columns_fn,
|
258 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
259 |
outputs=[leaderboard_table],
|
260 |
)
|
261 |
search_bar.change(
|
262 |
fn=select_columns_fn,
|
263 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
264 |
outputs=[leaderboard_table],
|
265 |
)
|