Spaces:
Running
Running
import os | |
import pandas as pd | |
from .utils import process_kernels, process_quantizations | |
COLUMNS_MAPPING = { | |
"config.name": "Experiment π§ͺ", | |
"config.backend.model": "Model π€", | |
# primary measurements | |
"report.prefill.latency.p50": "Prefill (s)", | |
"report.per_token.latency.p50": "Per Token (s)", | |
"report.decode.throughput.value": "Decode (tokens/s)", | |
"report.decode.efficiency.value": "Energy (tokens/kWh)", | |
"report.decode.memory.max_allocated": "Memory (MB)", | |
# deployment settings | |
"config.backend.name": "Backend π", | |
"config.backend.torch_dtype": "Precision π₯", | |
"quantization": "Quantization ποΈ", | |
"attention": "Attention ποΈ", | |
"kernel": "Kernel βοΈ", | |
# additional information | |
"architecture": "Architecture ποΈ", | |
"prefill+decode": "End-to-End (s)", | |
"Average β¬οΈ": "Open LLM Score (%)", | |
"#Params (B)": "Params (B)", | |
} | |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"] | |
SUBSETS = ["unquantized", "awq", "bnb", "gptq"] | |
SORTING_ASCENDING = [False, True, False] | |
def get_raw_llm_perf_df(machine: str = "1xA10"): | |
dfs = [] | |
for subset in SUBSETS: | |
try: | |
dfs.append( | |
pd.read_csv( | |
f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv" | |
) | |
) | |
except Exception: | |
print(f"Subset {subset} for machine {machine} not found") | |
perf_df = pd.concat(dfs) | |
llm_df = pd.read_csv( | |
"hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv" | |
) | |
llm_perf_df = pd.merge( | |
llm_df, perf_df, left_on="Model", right_on="config.backend.model" | |
) | |
return llm_perf_df | |
def processed_llm_perf_df(llm_perf_df): | |
# some assertions | |
assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1 | |
assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1 | |
assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1 | |
assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1 | |
# fix couple stuff | |
llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True) | |
llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace( | |
"flash_attention_2", "fa2" | |
) | |
llm_perf_df["prefill+decode"] = ( | |
llm_perf_df["report.prefill.latency.p50"] | |
+ (llm_perf_df["report.decode.latency.p50"]) | |
) | |
# llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply( | |
# process_architectures | |
# ) | |
llm_perf_df["architecture"] = llm_perf_df["Architecture"] | |
llm_perf_df["attention"] = ( | |
llm_perf_df["config.backend.attn_implementation"] | |
.str.replace("flash_attention_2", "FAv2") | |
.str.replace("eager", "Eager") | |
.str.replace("sdpa", "SDPA") | |
) | |
llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1) | |
llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1) | |
# round numerical columns | |
llm_perf_df = llm_perf_df.round( | |
{ | |
"report.prefill.latency.p50": 3, | |
"report.decode.latency.p50": 3, | |
"report.decode.throughput.value": 3, | |
"report.decode.efficiency.value": 3, | |
"report.decode.memory.max_allocated": 3, | |
"Average β¬οΈ": 3, | |
"prefill+decode": 3, | |
"#Params (B)": 3, | |
} | |
) | |
# filter columns | |
llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())] | |
# rename columns | |
llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True) | |
# sort by metric | |
llm_perf_df.sort_values( | |
by=SORTING_COLUMNS, | |
ascending=SORTING_ASCENDING, | |
inplace=True, | |
) | |
return llm_perf_df | |
def get_llm_perf_df(machine: str = "1xA10"): | |
dataset_directory = 'dataset' | |
if not os.path.exists(dataset_directory): | |
os.makedirs(dataset_directory) | |
if os.path.exists(f"{dataset_directory}/llm-perf-leaderboard-{machine}.csv"): | |
llm_perf_df = pd.read_csv(f"{dataset_directory}/llm-perf-leaderboard-{machine}.csv") | |
else: | |
llm_perf_df = get_raw_llm_perf_df(machine) | |
llm_perf_df = processed_llm_perf_df(llm_perf_df) | |
llm_perf_df.to_csv(f"{dataset_directory}/llm-perf-leaderboard-{machine}.csv", index=False) | |
return llm_perf_df | |