llm-perf-leaderboard / src /assets /text_content.py
regisss's picture
regisss HF staff
Fix typo
0564b52
raw
history blame
2.44 kB
TITLE = """<h1 align="center" id="space-title">πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ</h1>"""
INTRODUCTION_TEXT = f"""
The πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ aims to benchmark the performance (latency & throughput) of Large Language Models (LLMs) with different hardwares, backends and optimizations using [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark) and [Optimum](https://github.com/huggingface/optimum) flavors.
Anyone from the community can request a model or a hardware/backend/optimization configuration for automated benchmarking:
- Model evaluation requests should be made in the [πŸ€— Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and will be added to the πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ automatically.
- Hardware/Backend/Optimization performance requests should be made in the [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) to assess their relevance and feasibility.
"""
ABOUT_TEXT = """<h3>About the πŸ€— Open LLM-Perf Leaderboard πŸ‹οΈ</h3>
<ul>
<li>To avoid communication-dependent results, only one GPU is used.</li>
<li>LLMs are evaluated on a singleton batch and generating 1000 tokens.</li>
<li>Peak memory is measured in MB during the first forward pass of the LLM (no warmup).</li>
<li>Each pair of (Model Type, Weight Class) is represented by the best scored model. This LLM is the one used for all the hardware/backend/optimization experiments.</li>
<li>Score is the average evaluation score obtained from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">πŸ€— Open LLM Leaderboard</a>.</li>
<li>Ranking is based on the euclidean distance from the "Perfect LLM" (i.e. 0 latency and 100% accuracy).</li>
</ul>
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
CITATION_BUTTON_TEXT = r"""@misc{open-llm-perf-leaderboard,
author = {Ilyas Moutawwakil, RΓ©gis Pierrard},
title = {Open LLM-Perf Leaderboard},
year = {2023},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/optimum/llm-perf-leaderboard}",
@software{optimum-benchmark,
author = {Ilyas Moutawwakil, RΓ©gis Pierrard},
publisher = {Hugging Face},
title = {Optimum-Benchmark: A framework for benchmarking the performance of Transformers models with different hardwares, backends and optimizations.},
}
"""