Spaces:
Running
Running
import os | |
import gradio as gr | |
import pandas as pd | |
import plotly.express as px | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.assets.text_content import ( | |
TITLE, | |
INTRODUCTION_TEXT, | |
SINGLE_A100_TEXT, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
) | |
from src.utils import ( | |
restart_space, | |
load_dataset_repo, | |
make_clickable_model, | |
make_clickable_score, | |
num_to_str, | |
) | |
from src.assets.css_html_js import custom_css | |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" | |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
COLUMNS_MAPPING = { | |
"model": "Model π€", | |
"backend.name": "Backend π", | |
"backend.torch_dtype": "Load Dtype π₯", | |
"optimizations": "Optimizations π οΈ", | |
# | |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", | |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ", | |
"average": "Average Open LLM Score β¬οΈ", | |
# | |
"num_parameters": "#οΈβ£ Parameters π", | |
} | |
COLUMNS_DATATYPES = [ | |
"markdown", | |
"str", | |
"str", | |
"str", | |
# | |
"number", | |
"number", | |
"markdown", | |
# | |
"str", | |
] | |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"] | |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) | |
def get_benchmark_df(benchmark="1xA100-80GB"): | |
if llm_perf_dataset_repo: | |
llm_perf_dataset_repo.git_pull() | |
# load | |
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") | |
scores_df = pd.read_csv(f"./llm-perf-dataset/reports/additional_data.csv") | |
bench_df = bench_df.merge(scores_df, on="model", how="left") | |
bench_df["optimizations"] = bench_df[ | |
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"] | |
].apply( | |
lambda x: "BetterTransformer" | |
if x[0] == True | |
else ( | |
"LLM.int8" if x[1] == True else ("NF4" if x[2] == True else "") | |
), | |
axis=1, | |
) | |
return bench_df | |
def get_benchmark_table(bench_df): | |
# filter | |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())] | |
# rename | |
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True) | |
# sort | |
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) | |
# transform | |
bench_df["Model π€"] = bench_df["Model π€"].apply(make_clickable_model) | |
bench_df["#οΈβ£ Parameters π"] = bench_df["#οΈβ£ Parameters π"].apply(num_to_str) | |
bench_df["Average Open LLM Score β¬οΈ"] = bench_df["Average Open LLM Score β¬οΈ"].apply( | |
make_clickable_score | |
) | |
return bench_df | |
def get_benchmark_plot(bench_df): | |
# untill falcon gets fixed / natively supported | |
bench_df = bench_df[bench_df["generate.latency(s)"] < 100] | |
fig = px.scatter( | |
bench_df, | |
x="generate.latency(s)", | |
y="average", | |
color="model_type", | |
symbol="backend.name", | |
size="forward.peak_memory(MB)", | |
custom_data=[ | |
"model", | |
"backend.name", | |
"backend.torch_dtype", | |
"optimizations", | |
"forward.peak_memory(MB)", | |
"generate.throughput(tokens/s)", | |
], | |
symbol_sequence=["triangle-up", "circle"], | |
# as many distinct colors as there are model_type,backend.name couples | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
) | |
fig.update_layout( | |
title={ | |
"text": "Model Score vs. Latency vs. Memory", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Per 1000 Tokens Latency (s)", | |
yaxis_title="Average Open LLM Score", | |
legend_title="Model Type and Backend", | |
width=1200, | |
height=600, | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[ | |
"Model: %{customdata[0]}", | |
"Backend: %{customdata[1]}", | |
"Datatype: %{customdata[2]}", | |
"Optimizations: %{customdata[3]}", | |
"Peak Memory (MB): %{customdata[4]}", | |
"Throughput (tokens/s): %{customdata[5]}", | |
"Average Open LLM Score: %{y}", | |
"Per 1000 Tokens Latency (s): %{x}", | |
] | |
) | |
) | |
return fig | |
def filter_query( | |
text, backends, datatypes, optimizations, threshold, benchmark="1xA100-80GB" | |
): | |
raw_df = get_benchmark_df(benchmark=benchmark) | |
filtered_df = raw_df[ | |
raw_df["model"].str.lower().str.contains(text.lower()) | |
& raw_df["backend.name"].isin(backends) | |
& raw_df["backend.torch_dtype"].isin(datatypes) | |
& ( | |
pd.concat( | |
[ | |
raw_df["optimizations"].str.contains(optimization) | |
for optimization in optimizations | |
], | |
axis=1, | |
).any(axis="columns") | |
if len(optimizations) > 0 | |
else True | |
) | |
& (raw_df["average"] >= threshold) | |
] | |
filtered_table = get_benchmark_table(filtered_df) | |
filtered_plot = get_benchmark_plot(filtered_df) | |
return filtered_table, filtered_plot | |
# Dataframes | |
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") | |
single_A100_table = get_benchmark_table(single_A100_df) | |
single_A100_plot = get_benchmark_plot(single_A100_df) | |
# Demo interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
# leaderboard title | |
gr.HTML(TITLE) | |
# introduction text | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
# control panel title | |
gr.HTML("<h2>Control Panel ποΈ</h2>") | |
# control panel interface | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
label="Model π€", | |
info="π Search for a model name", | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
backend_checkboxes = gr.CheckboxGroup( | |
label="Backends π", | |
choices=["pytorch", "onnxruntime"], | |
value=["pytorch", "onnxruntime"], | |
info="βοΈ Select the backends", | |
elem_id="backend-checkboxes", | |
) | |
datatype_checkboxes = gr.CheckboxGroup( | |
label="Datatypes π₯", | |
choices=["float32", "float16"], | |
value=["float32", "float16"], | |
info="βοΈ Select the load datatypes", | |
elem_id="datatype-checkboxes", | |
) | |
optimizations_checkboxes = gr.CheckboxGroup( | |
label="Optimizations π οΈ", | |
choices=["BetterTransformer", "LLM.int8", "NF4"], | |
value=[], | |
info="βοΈ Select the optimizations", | |
elem_id="optimizations-checkboxes", | |
) | |
with gr.Row(): | |
score_slider = gr.Slider( | |
label="Average Open LLM Score π", | |
info="ποΈ Slide to minimum Average Open LLM score", | |
value=0.0, | |
elem_id="threshold-slider", | |
) | |
with gr.Row(): | |
filter_button = gr.Button( | |
value="Filter π", | |
elem_id="filter-button", | |
) | |
# leaderboard tabs | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0): | |
gr.HTML(SINGLE_A100_TEXT) | |
# Original leaderboard table | |
single_A100_leaderboard = gr.components.Dataframe( | |
value=single_A100_table, | |
datatype=COLUMNS_DATATYPES, | |
headers=list(COLUMNS_MAPPING.values()), | |
elem_id="1xA100-table", | |
) | |
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1): | |
# Original leaderboard plot | |
gr.HTML(SINGLE_A100_TEXT) | |
# Original leaderboard plot | |
single_A100_plotly = gr.components.Plot( | |
value=single_A100_plot, | |
elem_id="1xA100-plot", | |
show_label=False, | |
) | |
filter_button.click( | |
filter_query, | |
[ | |
search_bar, | |
backend_checkboxes, | |
datatype_checkboxes, | |
optimizations_checkboxes, | |
score_slider, | |
], | |
[single_A100_leaderboard, single_A100_plotly], | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
# Restart space every hour | |
scheduler = BackgroundScheduler() | |
scheduler.add_job( | |
restart_space, | |
"interval", | |
seconds=3600, | |
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], | |
) | |
scheduler.start() | |
# Launch demo | |
demo.queue(concurrency_count=40).launch() | |