BenchmarkBot's picture
fix optimizations names
02b17f3
raw
history blame
8.84 kB
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
SINGLE_A100_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
restart_space,
load_dataset_repo,
make_clickable_model,
make_clickable_score,
num_to_str,
)
from src.assets.css_html_js import custom_css
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
COLUMNS_MAPPING = {
"model": "Model πŸ€—",
"backend.name": "Backend 🏭",
"backend.torch_dtype": "Load Dtype πŸ“₯",
"optimizations": "Optimizations πŸ› οΈ",
#
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
"forward.peak_memory(MB)": "Peak Memory (MB) ⬇️",
"average": "Average Open LLM Score ⬆️",
#
"num_parameters": "#️⃣ Parameters πŸ“",
}
COLUMNS_DATATYPES = [
"markdown",
"str",
"str",
"str",
#
"number",
"number",
"markdown",
#
"str",
]
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(f"./llm-perf-dataset/reports/additional_data.csv")
bench_df = bench_df.merge(scores_df, on="model", how="left")
bench_df["optimizations"] = bench_df[
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
].apply(
lambda x: "BetterTransformer"
if x[0] == True
else (
"LLM.int8" if x[1] == True else ("NF4" if x[2] == True else "")
),
axis=1,
)
return bench_df
def get_benchmark_table(bench_df):
# filter
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
# transform
bench_df["Model πŸ€—"] = bench_df["Model πŸ€—"].apply(make_clickable_model)
bench_df["#️⃣ Parameters πŸ“"] = bench_df["#️⃣ Parameters πŸ“"].apply(num_to_str)
bench_df["Average Open LLM Score ⬆️"] = bench_df["Average Open LLM Score ⬆️"].apply(
make_clickable_score
)
return bench_df
def get_benchmark_plot(bench_df):
# untill falcon gets fixed / natively supported
bench_df = bench_df[bench_df["generate.latency(s)"] < 100]
fig = px.scatter(
bench_df,
x="generate.latency(s)",
y="average",
color="model_type",
symbol="backend.name",
size="forward.peak_memory(MB)",
custom_data=[
"model",
"backend.name",
"backend.torch_dtype",
"optimizations",
"forward.peak_memory(MB)",
"generate.throughput(tokens/s)",
],
symbol_sequence=["triangle-up", "circle"],
# as many distinct colors as there are model_type,backend.name couples
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 Tokens Latency (s)",
yaxis_title="Average Open LLM Score",
legend_title="Model Type and Backend",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Datatype: %{customdata[2]}",
"Optimizations: %{customdata[3]}",
"Peak Memory (MB): %{customdata[4]}",
"Throughput (tokens/s): %{customdata[5]}",
"Average Open LLM Score: %{y}",
"Per 1000 Tokens Latency (s): %{x}",
]
)
)
return fig
def filter_query(
text, backends, datatypes, optimizations, threshold, benchmark="1xA100-80GB"
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["average"] >= threshold)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
single_A100_table = get_benchmark_table(single_A100_df)
single_A100_plot = get_benchmark_plot(single_A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# control panel title
gr.HTML("<h2>Control Panel πŸŽ›οΈ</h2>")
# control panel interface
with gr.Row():
search_bar = gr.Textbox(
label="Model πŸ€—",
info="πŸ” Search for a model name",
elem_id="search-bar",
)
with gr.Row():
backend_checkboxes = gr.CheckboxGroup(
label="Backends 🏭",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="β˜‘οΈ Select the backends",
elem_id="backend-checkboxes",
)
datatype_checkboxes = gr.CheckboxGroup(
label="Datatypes πŸ“₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="β˜‘οΈ Select the load datatypes",
elem_id="datatype-checkboxes",
)
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations πŸ› οΈ",
choices=["BetterTransformer", "LLM.int8", "NF4"],
value=[],
info="β˜‘οΈ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
score_slider = gr.Slider(
label="Average Open LLM Score πŸ“ˆ",
info="🎚️ Slide to minimum Average Open LLM score",
value=0.0,
elem_id="threshold-slider",
)
with gr.Row():
filter_button = gr.Button(
value="Filter πŸš€",
elem_id="filter-button",
)
# leaderboard tabs
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ–₯️ A100-80GB Leaderboard πŸ†", id=0):
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard table
single_A100_leaderboard = gr.components.Dataframe(
value=single_A100_table,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("πŸ–₯️ A100-80GB Plot πŸ“Š", id=1):
# Original leaderboard plot
gr.HTML(SINGLE_A100_TEXT)
# Original leaderboard plot
single_A100_plotly = gr.components.Plot(
value=single_A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
],
[single_A100_leaderboard, single_A100_plotly],
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()