auto-benchmark / app.py
IlyasMoutawwakil's picture
add files
d1e3b68
raw
history blame
5.97 kB
import random
import subprocess
import gradio as gr
from ansi2html import Ansi2HTMLConverter
from optimum_benchmark.task_utils import (
TASKS_TO_AUTOMODELS,
infer_task_from_model_name_or_path,
)
def get_backend_config():
return [
# seed
gr.Textbox(label="backend.seed", value=42),
# inter_op_num_threads
gr.Textbox(
label="backend.inter_op_num_threads",
value=None,
placeholder=None,
),
# intra_op_num_threads
gr.Textbox(
label="backend.intra_op_num_threads",
value=None,
placeholder=None,
),
# initial_isolation_check
gr.Checkbox(label="backend.initial_isolation_check", value=True),
# continous_isolation_check
gr.Checkbox(label="backend.continous_isolation_check", value=True),
# delete_cache
gr.Checkbox(label="backend.delete_cache", value=False),
]
def get_inference_config():
return [
# duration
gr.Textbox(label="benchmark.duration", value=10),
# warmup runs
gr.Textbox(label="benchmark.warmup_runs", value=1),
]
def get_pytorch_config():
return [
# no_weights
gr.Checkbox(label="backend.no_weights"),
# device_map
gr.Dropdown(["auto", "sequential"], label="backend.device_map"),
# torch_dtype
gr.Dropdown(
["bfloat16", "float16", "float32", "auto"],
label="backend.torch_dtype",
),
# disable_grad
gr.Checkbox(label="backend.disable_grad"),
# eval_mode
gr.Checkbox(label="backend.eval_mode"),
# amp_autocast
gr.Checkbox(label="backend.amp_autocast"),
# amp_dtype
gr.Dropdown(["bfloat16", "float16"], label="backend.amp_dtype"),
# torch_compile
gr.Checkbox(label="backend.torch_compile"),
# bettertransformer
gr.Checkbox(label="backend.bettertransformer"),
# quantization_scheme
gr.Dropdown(["gptq", "bnb"], label="backend.quantization_scheme"),
# use_ddp
gr.Checkbox(label="backend.use_ddp"),
# peft_strategy
gr.Textbox(label="backend.peft_strategy"),
]
conv = Ansi2HTMLConverter()
def run_experiment(kwargs):
arguments = [
"optimum-benchmark",
"--config-dir",
"./",
"--config-name",
"base_config",
]
for key, value in kwargs.items():
arguments.append(f"{key.label}={value if value != '' else 'null'}")
# stream subprocess output
process = subprocess.Popen(
arguments,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
)
ansi_text = ""
for ansi_line in iter(process.stdout.readline, ""):
# stream process output
print(ansi_line, end="")
# append line to ansi text
ansi_text += ansi_line
# convert ansi to html
html_text = conv.convert(ansi_text)
# extract style from html
style = html_text.split('<style type="text/css">')[1].split("</style>")[0]
# parse style into dict
style_dict = {}
for line in style.split("\n"):
if line:
key, value = line.split("{")
key = key.replace(".", "").strip()
value = value.split("}")[0].strip()
style_dict[key] = value
# replace style in html
for key, value in style_dict.items():
html_text = html_text.replace(f'class="{key}"', f'style="{value}"')
yield html_text
return html_text
with gr.Blocks() as demo:
# title text
gr.HTML("<h1 style='text-align: center'>πŸ€— Optimum Benchmark πŸ‹οΈ</h1>")
# explanation text
gr.Markdown(
"This is a demo space of [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark.git)."
)
model = gr.Textbox(
label="model",
value="bert-base-uncased",
)
task = gr.Dropdown(
label="task",
value="text-classification",
choices=list(TASKS_TO_AUTOMODELS.keys()),
)
device = gr.Dropdown(
value="cpu",
choices=["cpu", "cuda"],
label="device",
)
expetiment_name = gr.Textbox(
label="experiment_name",
value=f"experiment_{random.getrandbits(16)}",
)
model.submit(fn=infer_task_from_model_name_or_path, inputs=[model], outputs=[task])
with gr.Row():
with gr.Column(variant="panel"):
backend = gr.Dropdown(
["pytorch", "onnxruntime", "openvino", "neural-compressor"],
label="backend",
value="pytorch",
container=True,
)
with gr.Column(variant="panel"):
with gr.Accordion(label="Backend Config", open=False):
backend_config = get_backend_config() + get_pytorch_config()
with gr.Row():
with gr.Column(variant="panel"):
benchmark = gr.Dropdown(
choices=["inference", "training"],
label="benchmark",
value="inference",
container=True,
)
with gr.Column(variant="panel"):
with gr.Accordion(label="Benchmark Config", open=False):
benchmark_config = get_inference_config()
# run benchmark button
run_benchmark = gr.Button(value="Run Benchmark", variant="primary")
# accordion with output logs
with gr.Accordion(label="Logs:", open=True):
logs = gr.HTML()
run_benchmark.click(
fn=run_experiment,
inputs={
expetiment_name,
model,
task,
device,
backend,
benchmark,
*backend_config,
*benchmark_config,
},
outputs=[logs],
queue=True,
)
if __name__ == "__main__":
demo.queue().launch()