Spaces:
Running
Running
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from ansi2html import Ansi2HTMLConverter | |
ansi2html_converter = Ansi2HTMLConverter(inline=True) | |
def run_benchmark(kwargs): | |
for key, value in kwargs.copy().items(): | |
if key.label == "Compare to Baseline": | |
baseline = value | |
kwargs.pop(key) | |
elif key.label == "experiment_name": | |
experiment_name = value | |
kwargs.pop(key) | |
elif key.label == "model": | |
model = value | |
kwargs.pop(key) | |
elif key.label == "task": | |
task = value | |
kwargs.pop(key) | |
elif key.label == "device": | |
device = value | |
kwargs.pop(key) | |
elif key.label == "backend": | |
backend = value | |
kwargs.pop(key) | |
elif key.label == "benchmark": | |
benchmark = value | |
kwargs.pop(key) | |
else: | |
continue | |
if baseline: | |
baseline_arguments = [ | |
"optimum-benchmark", | |
"--config-dir", | |
"./configs", | |
"--config-name", | |
"base_config", | |
f"backend=pytorch", | |
f"task={task}", | |
f"model={model}", | |
f"device={device}", | |
f"benchmark={benchmark}", | |
f"experiment_name=baseline", | |
] | |
for component, value in kwargs.items(): | |
if f"{benchmark}." in component.label: | |
label = component.label.replace(f"{benchmark}.", "benchmark.") | |
if isinstance(component, gr.Dataframe): | |
for sub_key, sub_value in zip(component.headers, value[0]): | |
baseline_arguments.append(f"++{label}.{sub_key}={sub_value}") | |
else: | |
baseline_arguments.append(f"{label}={value}") | |
# yield from run_experiment(baseline_arguments) but get the return code | |
baseline_return_code, html_text = yield from run_experiment(baseline_arguments, "") | |
if baseline_return_code is not None and baseline_return_code != 0: | |
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False) | |
return | |
else: | |
html_text = "" | |
arguments = [ | |
"optimum-benchmark", | |
"--config-dir", | |
"./configs", | |
"--config-name", | |
"base_config", | |
f"task={task}", | |
f"model={model}", | |
f"device={device}", | |
f"backend={backend}", | |
f"benchmark={benchmark}", | |
f"experiment_name={experiment_name}", | |
] | |
for component, value in kwargs.items(): | |
if f"{backend}." in component.label or f"{benchmark}." in component.label: | |
label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.") | |
if isinstance(component, gr.Dataframe): | |
for sub_key, sub_value in zip(component.headers, value[0]): | |
arguments.append(f"++{label}.{sub_key}={sub_value}") | |
else: | |
arguments.append(f"{label}={value}") | |
return_code, html_text = yield from run_experiment(arguments, html_text) | |
if return_code is not None and return_code != 0: | |
yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False) | |
return | |
if baseline: | |
baseline_table = pd.read_csv(f"runs/baseline/{benchmark}_results.csv", index_col=0) | |
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0) | |
# concat tables | |
table = pd.concat([baseline_table, table], axis=0) | |
table = postprocess_table(table, experiment_name) | |
else: | |
table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0) | |
table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()}) | |
yield gr.update(value=html_text), gr.update(interactive=True), table_update | |
return | |
def run_experiment(args, html_text=""): | |
command = "<br>".join(args) | |
html_text += f"<h3>Running command:</h3>{command}" | |
yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False) | |
# stream subprocess output | |
process = subprocess.Popen( | |
args, | |
stdout=subprocess.PIPE, | |
stderr=subprocess.STDOUT, | |
universal_newlines=True, | |
) | |
curr_ansi_text = "" | |
for ansi_line in iter(process.stdout.readline, ""): | |
# stream process output to stdout | |
print(ansi_line, end="") | |
# skip torch.distributed.nn.jit.instantiator messages | |
if "torch.distributed.nn.jit.instantiator" in ansi_line: | |
continue | |
# process download messages | |
if "Downloading " in curr_ansi_text and "Downloading " in ansi_line: | |
curr_ansi_text = curr_ansi_text.split("\n")[:-2] | |
print(curr_ansi_text) | |
curr_ansi_text.append(ansi_line) | |
curr_ansi_text = "\n".join(curr_ansi_text) | |
else: | |
# append line to ansi text | |
curr_ansi_text += ansi_line | |
# convert ansi to html | |
curr_html_text = ansi2html_converter.convert(curr_ansi_text) | |
# stream html output to gradio | |
cumul_html_text = html_text + "<br><h3>Streaming logs:</h3>" + curr_html_text | |
yield gr.update(value=cumul_html_text), gr.update(interactive=False), gr.update(visible=False) | |
return process.returncode, cumul_html_text | |
def postprocess_table(table, experiment_name): | |
table["experiment_name"] = ["baseline", experiment_name] | |
table = table.set_index("experiment_name") | |
table.reset_index(inplace=True) | |
if "forward.latency(s)" in table.columns: | |
table["forward.latency.reduction(%)"] = ( | |
table["forward.latency(s)"] / table["forward.latency(s)"].iloc[0] - 1 | |
) * 100 | |
table["forward.latency.reduction(%)"] = table["forward.latency.reduction(%)"].round(2) | |
if "forward.throughput(samples/s)" in table.columns: | |
table["forward.throughput.speedup(%)"] = ( | |
table["forward.throughput(samples/s)"] / table["forward.throughput(samples/s)"].iloc[0] - 1 | |
) * 100 | |
table["forward.throughput.speedup(%)"] = table["forward.throughput.speedup(%)"].round(2) | |
if "forward.peak_memory(MB)" in table.columns: | |
table["forward.peak_memory.reduction(%)"] = ( | |
table["forward.peak_memory(MB)"] / table["forward.peak_memory(MB)"].iloc[0] - 1 | |
) * 100 | |
table["forward.peak_memory.reduction(%)"] = table["forward.peak_memory.savings(%)"].round(2) | |
if "generate.latency(s)" in table.columns: | |
table["generate.latency.reduction(%)"] = ( | |
table["generate.latency(s)"] / table["generate.latency(s)"].iloc[0] - 1 | |
) * 100 | |
table["generate.latency.reduction(%)"] = table["generate.latency.reduction(%)"].round(2) | |
if "generate.throughput(tokens/s)" in table.columns: | |
table["generate.throughput.speedup(%)"] = ( | |
table["generate.throughput(tokens/s)"] / table["generate.throughput(tokens/s)"].iloc[0] - 1 | |
) * 100 | |
table["generate.throughput.speedup(%)"] = table["generate.throughput.speedup(%)"].round(2) | |
if "generate.peak_memory(MB)" in table.columns: | |
table["generate.peak_memory.reduction(%)"] = ( | |
table["generate.peak_memory(MB)"] / table["generate.peak_memory(MB)"].iloc[0] - 1 | |
) * 100 | |
table["generate.peak_memory.reduction(%)"] = table["generate.peak_memory.reduction(%)"].round(2) | |
return table | |