Pclanglais
commited on
Commit
•
f6bae77
1
Parent(s):
ae00ef2
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import optimum
|
2 |
import transformers
|
3 |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
4 |
-
from
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
import json
|
@@ -19,10 +19,7 @@ repetition_penalty=1.7
|
|
19 |
|
20 |
model_name = "Pclanglais/Bellay"
|
21 |
|
22 |
-
|
23 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
|
24 |
-
device_map="auto"
|
25 |
-
)
|
26 |
|
27 |
|
28 |
styles_prompts_dict = {
|
@@ -68,28 +65,13 @@ class MistralChatBot:
|
|
68 |
|
69 |
system_prompt = styles_prompts_dict[style]
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
input_ids=input_ids,
|
79 |
-
use_cache=False,
|
80 |
-
early_stopping=False,
|
81 |
-
bos_token_id=model.config.bos_token_id,
|
82 |
-
eos_token_id=model.config.eos_token_id,
|
83 |
-
pad_token_id=model.config.eos_token_id,
|
84 |
-
temperature=0.5,
|
85 |
-
do_sample=True,
|
86 |
-
max_new_tokens=max_new_tokens,
|
87 |
-
top_p=top_p,
|
88 |
-
repetition_penalty=repetition_penalty
|
89 |
-
)
|
90 |
-
# Decode the generated response to text
|
91 |
-
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
92 |
-
return response_text
|
93 |
|
94 |
def predict_simple(self, user_message, style):
|
95 |
system_prompt = styles_prompts_dict[style]
|
|
|
1 |
import optimum
|
2 |
import transformers
|
3 |
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM
|
4 |
+
from vllm import LLM, SamplingParams
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
import json
|
|
|
19 |
|
20 |
model_name = "Pclanglais/Bellay"
|
21 |
|
22 |
+
llm = LLM(model_name)
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
styles_prompts_dict = {
|
|
|
65 |
|
66 |
system_prompt = styles_prompts_dict[style]
|
67 |
|
68 |
+
sampling_params = SamplingParams(temperature=0.7, top_p=.95, max_tokens=500, presence_penalty = 2)
|
69 |
+
detailed_prompt = "<|im_start|>system\n" + system_prompt + "<|im_end|>\n<|im_start|>user"""
|
70 |
+
detailed_prompt = detailed_prompt + "\n" + user_input + "<|im_end|>\n<|im_start|>assistant\n"
|
71 |
+
prompts = [detailed_prompt]
|
72 |
+
outputs = llm.generate(prompts, sampling_params, use_tqdm = False)
|
73 |
+
generated_text = outputs[0].outputs[0].text
|
74 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def predict_simple(self, user_message, style):
|
77 |
system_prompt = styles_prompts_dict[style]
|